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LIST OF FIGURES

Notations
Numerical value and notation The following diagramm introduces the notations that will be used

c Light velocity 299792458
f Cavity frequency 3.9 Ghz
λ Cavity wave length 76.87mm
ω Cavity proper pulsation
k Space pulsation kc = ω 81.738/m
µ0 π 10−7

Scale Scaling factor for the field map 9.3227 106

φ RF oscillator phase 287.9 degrees

x, y, z Coordinates of a particle, see diagramm below
px, py, pz Coordinates of a particle, see diagramm below p0 = 15Mev/c

lc The five cells cavity length lc = 5λ/2 192.3mm
Lc Cavity length including surrounding pipes 300mm
d Surrounding pipe length 53.85mm
e Electron charge 1.6 10−19 C
T Transit time factor

PHFSS Power input to the cavity with HFSS 5.46 10−16 Joules

in this paper. Please note that the z axis starts at the entry of the pipe before the 5 cells. Each
time we don’t use this convention, we will mention it.

Figure 1: Diagramm of the cavity
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1 BEAM DYNAMICS AND INTRODUCTION TO THE MATRIX FORMALISM

1 Beam dynamics and introduction to the matrix formalism

1.1 Introduction to the theory of beam dynamics

In this section I will introduce a theory, which is uncomplete and thus canno’t be directly applied
to the cavity, but still, it helps me a lot to understand the definition of terms and the basis of
the matrix formalism we were using in 6 dimensions. Indeed, the following results doesn’t take
in account the change of δp/p, and the z coordinate which are needed to describe the behaviour
of the cavity.

In beam dynamics, most of the time we consider one particule, that we will call the reference
particule, and which follows a predescribed path. The other particules have trajectories close
to the reference particule. In order to simplify the equation of motion, we generally use the
curvilinear coordinates system rather than cartesian. The axis, X,Y,S are following the reference
particule through its motion. As a result of this, the coordinates of other particules are always
relative to the position of the reference particule. When using the equation of motion we also
have to be careful that the time of the particule is different of the reference particule. We will
not in this paper establish the equation of motion, but we strongly recommand the reading of the
section 4.2 and 4.7 of the book from H. Wiedemann [15]. We will try to remember in this section
that coordinates used further are coordinates relative to the reference particule. As descibed in
figure 2, when we will write x′in, in fact it will correspond to a dx′in and the same for the output.

Figure 2: Illustration of the matrix input variable

1.2 General resolution of the perturbated linear equation of motion

1.2.1 Vectorial form

We consider the following motion equation where u stands for x or y, and s is the curvilign
coordinate :

f(s) = u′′ + K(s).u
u(s0) = u0

u′(s0) = u′0

For the resolution we will use the general method of a nth degree linear differential equation
using the Resolvent matrix. This method is very nice and has the advantage of giving a result
directly on matrix form. To get started, let’s write the equation in vector formalism :(

u′

u′′

)
=
(

0 1
K(s) 0

)
.

(
u
u′

)
+
(

0
f(s)

)
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1 BEAM DYNAMICS AND INTRODUCTION TO THE MATRIX FORMALISM

Now, we define X = (u u′)T to write the following general linear differential equation, but
the method that we will use can be written for X = (u u′ u′′ ... u(n))T in a more general context
of nth degree equation.

X ′(s) = A(s)X(s) + B(s)

1.2.2 Homogeneous equation

We first solve the Homegeneous Equation

X ′(s) = A(s)X(s)

and define the resolvente matrix R(s) = [C1 ... Cn] where Ci = (xi(s) x′i(s) ... x
(n)
i (s))T and

(xi)i∈[1;n] is a base of the vectorial space of solutions. In our example, cos and sin are solutions.

R(s) =
(

C(s) S(s)
C ′(s) S′(s)

)
As we have ∀i C ′

i = A.Ci then
R′ = AR

and the general solution will be :
X = R.Ω0

where Ω0 = (u0u
′
0...u

(n)
0 )T .

1.2.3 Particular solution by variation of constant parameter

Let’s find a solution that can be written X(s) = R(s).Ω(s) and solve the general equation.

X ′ = AX + B

X = R.Ω

Replacing X in the general equation, and remembering that R′ = AR we have :

RΩ′ = B

and the invertibility of R, given by the fact that it contains base vectors leads us to :

Ω(s) =
∫ s

s0

R−1(t)B(t)dt

and the particular solution.

1.2.4 General Solution

We eventually have the general result :

X(s) = R(s).(Ω0 + Ω(s))

Now, in our particular case, f(s) = 1
ρ0

(s) δ

R−1(s) =
(

S′(s) −C ′(s)
S(s) C(s)

)
=
(

C(s) S(s)
S(s) C(s)

)

Ω(s) = δ

∫ s

s0

(
S
ρ0

(t)
C
ρ0

(t)

)
dt
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1 BEAM DYNAMICS AND INTRODUCTION TO THE MATRIX FORMALISM

And if we define D as :

R(s).Ω(s) = δ

(
D(s)
D′(s)

)
Then we can add a new initial parameter, δ = δp

p and eventually :u
u′

δ

 =

C S D
C ′ S′ D′

0 0 1

 .

u(s0)
u′(s0)

δ0


1.3 Matrix formalism

1.3.1 Illustration of matrix use in optics

According to figure 3, if the red line stands for the beam trajectory through a simple drift, we
have the following result in two dimensions with the approximation of small angles :(

xout

x′out

)
=
(

xin + tan(x′)d ≈ x + d.x′

x′in

)
=
(

1 d
0 1

)(
xin

x′in

)
This is an example which will slightly leeds us to the matrix formalism that we will use for the
cavity in three dimensions.

Figure 3: Illustration of the matrix formalism in optics

1.3.2 Notation used for the cavity

In the previous section, we used u′(s) where s is the curviligne coordinate. But we can also
interprete it as the angle between the U axis (X or Y axis) and the beam trajectory tangent.
This makes the link between the optical example given previously and the beam dynamics section.
As a result of this, as the tangent of this angle in radian is equal to the ratio between px and pz

(respectively py and pz), we can write, in the approximation of small deflection around the main
trajectory z axis :

px = tan(x′).pz ≈ x′.pz

py = tan(y′).pz ≈ y′.pz

pz = p0√
1+tan2(x′)+tan2(y′)

≈ p0(1− x′2+y′2

2 ) ≈ p0

(1)

This will be useful when we will further need to go from x′ to px and y’ to py. Now that the link
between s derivative, momentum and angle is made, it is time to introduce the notations for a
three dimensional beam. For practical reason, as the curvilign coordinate s is really close to z
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1 BEAM DYNAMICS AND INTRODUCTION TO THE MATRIX FORMALISM

along the trajectory inside the cavity, we will use z. Thus this will be the structure of the input
vector for the cavity matrix, and we will pay attention to the units :

V =



x (m)
x′ (rad)
y (m)
y′ (rad)
z (m)
δp
p (�)


And our problem is, determining the matrix of the 5 cell cavity, assuming that it is constant if we
consider beam trajectories which are really close to the reference particule. This matrix should
give us the folowing relation for every input vetor Vin, which represents a particule a little bit
offset relatively to the reference particule, and gives use all the parameters values at the en of
the cavity for this same particule, Vout :

Vout = A.Vin

27 Juin 2007 5 Branlard Emmanuel



2 MODELLING THE CAVITY WITH FIVE PILLBOXES

2 Modelling the cavity with five pillboxes

In this part, we will modelized the cavity by five pillboxes and two drifts pipe on each side of the
five cells. We will assume that the y displacement isn’t influenced by the cavity, which means
that in this plane the beam exactly behave like in a drift. In a result of this we will work with a
4D matrix, and we will add the 2 y components at the end.

2.1 Equation of motion in a pillbox

The following calculation where developped in a similar way by Donald A. Edwards [5]. We kept
harmonious notations. Here we will use the S axis, which will be identical to the Z axis. The
middle of the cell will correspond to s = 0, and the cell length will be λ/2. The r subscript will
stands for the reference particle data. X will correspond to absolute transverse coordinate, and
thus x ≡ X − Xr. From the equations of Padamsee, Knobloch and Hays ??, page 41 , for a
TM110 mode pillbox, in the paraxial approximation, usual for linear dynamics, we can assume
that the fields will be of the following form. As the longitudinal E field is linear with respect to
X near the longitudinal axis we will use E′ = ∂Ez

∂X assumed to be constant near the axis :

Es(X, t) = E′X cos(ωt) (2)

By(X, t) =
E′

ω
cos(ωt) (3)

The equations of motion, with the only Lorentz force ~F = e( ~E + ~v)× ~B are :

dPX

dt
= −eE′Vs

ω
sin(ωt) (4)

dPS

dt
= eE′X cos(ωt) + eE′VX

ω
sin(ωt) (5)

We will define without justification the transit time factor T :

T =
2eE′

pck

2.2 The One cell pill box model

For a particle leading the reference particle by a distance z we have :

Es = E′X cos(ωt− kz) ≈ E′X cos(ωt) + E′Xkzsin(ωt) (6)

By =
E′

ω
cos(ωt− kz) ≈ E′

ω
sin(ωt)− E′

c
z cos(ωt) (7)

which can be written differently using s = vst ≈ ct and ω = kc. Let’s write equations 4 and 9
for the reference particle, using derivative with respect to s now :

dPX,r

ds
=

−eE′

kc
sin(ks) (8)

dPS,r

ds
=

eE′

c
Xr cos(ks) +

eE′

kc2
VXr sin(ks) (9)

(10)

And for a particle, set at sp = s + z, neglecting second orders terms :

dPX

ds
= −eE′

kc
sin(ks) +

eE′

c
z cos(ks) (11)

dPS

ds
=

eE′

c
X cos(ks) +

eE′

kc2
VX sin(ks) (12)
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2 MODELLING THE CAVITY WITH FIVE PILLBOXES

Substracting those two sets of equations gives us

dpx

ds
=

eE′

c
z cos(ks) (13)

dps

ds
=

eE′

c
X cos(ks) +

eE′

kc

dx

ds
sin(ks) (14)

Let’s integrate 13 from s = −λ/4 to s, remembering that kλ/4 = π/2 :

px(s) = px(−λ/4) +
eE′

ck
z (sin(ks) + 1) (15)

Now, as x′(s) = px/ps we have :

x′(s) = x′in +
Tp

2
z sin(ks) +

Tp

2
z (16)

Which we can integrate again :

x(s) = xin +
(

x′in +
Tp

2
z

)(
s +

λ

4

)
− Tp

2k
z cos(ks) (17)

Equations 16 and 17 allows us to integrate equation 9, and eventually :

δp

p
= xin

T

2
[1 + sin(ks)] (18)

+ x′in
T

2

[(
s +

λ

4

)
sin(ks)

]
(19)

+ z
T 2

4

[(
s +

λ

4

)
sin(ks)− 1

2k
sin(2ks)

]
(20)

2.3 The One cell pill box transit matrix

To have the matrix of the entire cell we just have to evaluate the previous expression at s = λ/4
which corresponds to the exit of the cell.

Mcell =


1 λ/2 Tλ/4 0
0 1 T 0
0 0 1 0
T Tλ/4 T 2λ/8 1


Then the matrix of the 5 cells is :

M5
cell =


1 5λ/2 25Tλ 0
0 1 5T 0
0 0 1 0

5T 25Tλ/4 85T 2λ/8 1


The matrix for a drift of d is :

Md =


1 d 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Eventually, the matrix of the whole cavity with surrounding pipes is :

Mcav = Md.M
5
cell.Md =


1 2d + 5λ/2 5Td + 25Tλ/4 0
0 1 5T 0
0 0 0 0

5T 5Td + 25Tλ/4 85T 2λ/8 1
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2 MODELLING THE CAVITY WITH FIVE PILLBOXES

Before evaluating this matrix let’s write it in 6D, so including y and y′ components :

Mcav =



1 2d + 5λ/2 0 0 5Td + 25Tλ/4 0
0 1 0 0 5T 0
0 0 1 2d + 5λ/2 0 0
0 0 0 1 0 0
0 0 0 0 0 0

5T 5Td + 25Tλ/4 0 0 85T 2λ/8 1


Numerically :

Mcav =



1 0.300 0 0 −0.452 0
0 1 0 0 −3.016 0
0 0 1 0.300 0 0
0 0 0 1 0 0
0 0 0 0 1 0

−3.016 −0.452 0 0 0.297 1


with

d = 0.05385 m
λ = 0.07692 m
T = −0.6031
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3 USING ASTRA TO DETERMINE THE CAVITY MATRIX

3 Using ASTRA to determine the cavity matrix

3.1 A short description of Astra

Astra is a free particle tracking software which can take in account several particles inside
of an electromagnetic fields. All the programs and a precize documentation can be found at
http://www.desy.de/ mpyflo/.Here we will use the fonctionnality which allows us to directly
enter the E/B field map as a data of the program. Astra always uses at least to files. The first
one is an .INI file and contains the initial particle distrubution in terme of position, momentum,
and time. We will name it input_particles.ini. The second one is a .IN file which contains all
the necessary parameters for astra running. We will name it run.in. Examples of these files can
be found in annex.

3.2 Description of the method

The main idea is that when you multiply a matrix by the ith canonical base vector you obtain
exactly the ith column of the matrix.

A11 . A1n

. . .
Ai1 . Ain

. . .

. . .
An1 . Ann

 .



0
.
λ
.
.
0

 = λ



A1i

.
Aii

.

.
Ani

 (21)

Then we just have to input into the astra program the six canonical vectors, collect the output
informations given by astra, and then this will give us the numerical cavity matrix.

3.3 The physical limit of this method

As we are treating data with physical units, we need to be careful of using canonical vectors that
make sense. As a result of this, we will use the following vectors, and keep this notation along
this document.

V0 = ~0 V1 =



0.001
0
0
0
0
0

V2 =



0
0.01
0
0
0
0

V3 =



0
0

0.001
0
0
0

V4 =



0
0
0

0.01
0
0

V5 =



0
0
0
0

0.001
0

V6 =



0
0
0
0
0

0.1


(22)

For the position offset we have chosen 1mm, for the deflection 10 mrad and for the absolute
variation of p we choosed a a tenth offset. Those values are reasonable given the size of the
cavity.

3.4 Configuring Astra

3.4.1 The fields format

The fields were generated with the program HFSS. Astra needs six files to represent the E and B
fields. Those might have the same name, contain the "3D" characters at the beginning or at the
fifth position of the file name, and end with the extensions .ex, .ey, .ez, .bx, .by, .bz. We used
3D.ex, but 5cel3D_field.ex should also work. Then the files has to be in a specific format, with
three line of header, and then the data developped along x in columns and succesively along y
and z in rows. If F (i, j, k) is the field value at the point x(i), y(j), z(k), Nx the number of x
values and respectively for y and z, then the file should have this shape :
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3 USING ASTRA TO DETERMINE THE CAVITY MATRIX



Nx x(1) x(2) ... x(Nx)
Ny y(1) y(2) ... y(Ny)
Nz z(1) z(2) ... z(Nz)




F (1, 1, 1) F (2, 1, 1) ... ... F (Nx, 1, 1)
... ... ... ... ...

F (1, Ny, 1) F (2, Ny, 1) ... ... F (Nx,Ny, 1)
... ...
... ...
... ...
... ...

F (1, 1, Nz) F (2, 1, Nz) ... ... F (Nx, 1, Nz)
... ... ... ... ...

F (1, Ny, Nz) F (2, Ny, Nz) ... ... F (Nx, Ny, Nz)




3.4.2 The fields time phase

The fields we have is a picture of the time depending fields. To make them be time dependent
astra will multiply them by a time depending sine function. Let’s call Ez0(z) the field map we
have, Ez(z, t) the real field and Ep

z (t) the field seen by the particle at t, Ep
z (z) the field seen by

the particle at z.
Ez(z, t) = Ez0(z).sin(ωt + φ) (23)

Then, as the particle flights at the speed of light velocity, we have z(t) = ct and thus :

Ep
z (z) = Ez(z,

z

c
) = Ez0(z).sin(2π

z

λ
+ φ) (24)

The same is done for the other components of E and B. As we included in our field map the two
small pipes surrounding the cavity, the best way to adjust the phase is to adjust it in reference
to the middle of the cavity. Indeed, at z = Lc/2 = 150mm, we are in the middle of the third
cell. In order to have the right kick at the right position we chose φ such that the sine is equal
to minus one at Lc/2, ie :

2π
Lc

2λ
+ φ =

−π

2
(25)

We find φ = 287.58 degrees. Figure 4 represents the Ez0(z) and the sine function of z. The
product of the two give us the field seen by the particle with z, and we can see that it will be
positive all along the trajectory.

27 Juin 2007 10 Branlard Emmanuel



3 USING ASTRA TO DETERMINE THE CAVITY MATRIX

Figure 4: Ezo (in red) in MV/m and the sine function adjusted in phase without scale

3.4.3 The fields scaling

As the fields were generated by , arbitrary values of the power given to the cavity were inputed.
As a result of this, the fields have to be scaled to their real values by multiplying all the E and B
components by a same scaling factor. Astra has his own scale factor algorythm, but it uses the
maximum E value on the cavity axis. With the TM110 mode we use, the electric field is equal to
zero on the axis, so this method is unefficient. We used a method consisting in integrating Ep

z

along the axis x = 1mm, y = 0, and compare the voltage value with the real one : 45kV.

V =
∫ Lc

0
Ep

z .dz (26)

Numerically we have data every zstep, and assuming that the function under the integral is
constant between two steps then, it leads us to :

V =
∑

i

∫ zi+1

zi

Ep
z (z).dz =

∑
i

Ep
z (zi)

∫ zi+1

zi

dz =
∑

i

Ep
z (zi).zstep (27)

We find V = 4.8270.10−3V/m, and a scale of 9.3227e+6 to have the good field amplitude
in V/m, which means a scale of 9.327 to have a field in MV/m which is what is expected by
ASTRA. We will use the same scale factor for B, which will give us fields in MTesla, which is an
non usual unit, but it seems that it is what is needed by astra. As our hfss field map represent
H, we will also multiply this by µ0.

3.4.4 The input file format

Column 1 2 3 4 5 6 7 8 9 10
Parameter x y z px py pz clock macro charge particle index status flag

Unit m m m eV/c eV/c eV/c ns nC
C Format 6.4e 6.4e 6.4e 6.4e 6.4e 6.4e 6.4e 6.4e int int

The particle index could be 1,2,3 or 4 respectively corresponding to electrons, positrons,
protons, and hydrogen ions. The status flag we will use will be 3 for particles that we want to
track in order to have their trajectory, or 5 if we don’t want their trajectory inside the cavity. If
a particle is lost during the simulation, a negative status flag will be attributed.
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3 USING ASTRA TO DETERMINE THE CAVITY MATRIX

3.4.5 The NEWRUN section of the run file

In this section we configure the way astra will run and track the particles. By setting the param-
eter Distribution = ’input_particle.ini’ we define the relative location of the input distribution
file relative to the directory where we are runnig astra. Example : If the astra.exe program
is in the root /, the run input file located at /run/astra_run.in, and the distribution file at
/distribs/input_particles.ini. Then the parameter in the astra_run.in file has to be Distribu-
tion = ’distribs/input_particles.ini’. And we run astra by typing, in the root directory : »astra
run/astra_run.in.

It is important to set Z_START and Z_STOP, because it defines the range where the
particles will be tracked. No particle will be tracked after Z_STOP, and all unlost particles will
have a final z around Z_STOP. To generate the output file we need, in this example the file
run.0030.001, we have to set PhaseS as true in this section. If we also want to track the particle
along his trajectory in order to plot it, we have to set TrackS to True and set the status flag of
the particles we want to track at the value 3.

3.4.6 The CAVITY section of the run file

In this section, we configure the cavity. Here is what it could look like :

&CAVITY
LEfield=.T
File_Efield(1) = ’fields/3D’ ,
Nue(1)=3.9, Phi(1)=107.11 , C_pos(1)=0.15,
C_NumB(1)=1, C_NoScale(1)=T

/

• LEfield is a switch, when set to true the cavity is present, otherwise, astra run as if no
cavity fields were present.

• File_Efield defines the file name used for the fields. It can be a relative or absolute path.
Here, it means that the fields files are named 3D.ex 3D.ey etc... and are situated in the
directory fields in reference to the directory where you are running astra (confer previous
section for the distribution file).

• Nue is the RF frequency of the cavity field in GHz

• Phi is the phase in degree added to the RF sine function, which generates the time oscil-
lation inside of the cavity.

• C_pos defines the position of the center of the cavity. Indeed our fields have a z index
which goes from -150 mm to 150 mm. Astra will add a 150 z offset.

• C_NumB defines the number of cell/period if we want to repeat several time the field in
space.

• C_NoScale when set as true avoid the scaling mathod used by astra. Indeed we already
did a previous scaling of the fields.

3.5 Important errors to avoid

In order to make this work beneficial to further similar studies, we will here describe the different
problems we encountered and solutions found.

• The scale : The fields given by HFSS have to be scaled as describes before. It seems to
be the same scale for E and H. Then H must be multipied by µ0 to obtain B.
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• The units : Astra needs fields files in MV/m and MT scale.

• The input disctibution file : the first line of this file contains the information of the
reference particle. The following lines concerns the other particules and they are all given
relativly to the reference particule.

• The output distribution file run.0030.001 : It has the same structure as the input
distribution file. Nevertheless, x,y,px,py are absolute values, and not values with respect
to the reference particle. However pz, and z are relative to the reference particle.

• Using astra programs : Astra comes with three other programs called lineplot.exe,
fieldplot.exe and postpro.exe. To use them you must have in the same directory the file
grfont.dat that can be found at http://www.desy.de/ mpyflo/. Moreover, you have to set
your color settings at 16 Bits rather than 32, other wise it won’t work.
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4 Programs developped and resulting matrix

4.1 Description of the different programs

Several C programs have been written during this study, to save time doing calculation, formating
files, and converting variables. Here is a schematic describing the main relationship between those
programs and external files generated or needed for the programs to run.

Figure 5: Organigramm of the created programs

Convert fields As described in figure 5, the Convert_fields.exe program open the file
param_convert_fields.txt which shoul have this format :

E file location
H file location
xmin xmax xstep
ymin ymax ystep
zmin zmaz zstep
Z offset/Cavity Center position
RF Lambda
Integrate Voltage along the x=1mm axis
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Numerical values are given in float format, in meters and Volt. The two first lines concern the
fields files generated by HFSS. If z doesn’t start at 0 but at -15mm then the z offset should be
set to 0.150 m. This value is the same than the C_pos of the Cavity section in the astra run file.

The output of the program is the six fields files well formated and scaled. The electric field
is in MV/m and the magnetic field in MT. Moreover, to obtain the B field, the H field has been
multiplied by µ0 = 2π.10−7.

The program also generates the file axis.ez, which is the Ez field at x = 1mm. The four
columns of this file correspond to x, y, z, Ez, in millimeters and V/m.

The files by_x_z.dat, bz_x_z.dat, ez_x_z.dat, represents respectively By, Bz and Ez at
y=0 in a grid Z*X, which means that the lines correspond to the different values of z, and the
columns to the different values of x.

How to run it ? Just type convert_fields. Then a prompt will ask you whether you want
to give your own scale factor, or whether you want the program to calculate it. It will use the
method of integration along the x = 1mm axis previoulsy described.

Input generator The program is simply called by typing input_generator and generates the
file input_particles.ini. The first line of this file correspond to the reference particule, and the
others are given relatively to the first one.

Matrix The matrix program will read the astra output file, convert it to good variables using
formula 1. After transposition and normalisation, it will output a matrix, in the file matrix.txt.
It will ask for one argument which is the location of the file generated by astra of the form :
astra_run_file_name.zzzz.rrr. Where zzzz correspond to the length in cm of the tracking, and
rrr the run number. In our example it will simply be run.0030.001. In our example, we call this
program by typing : >matrix run.0030.001. Before running the program you must be sure that
the file param_matrix.txt is present in the same folder than the program and that it is well
configured. Here is what this file should look like :

X scale factor
X’ scale factor
Y scale factor
Y’ scale factor
Z scale factor
Delta p over p scale factor
P0

P0 is the momentum of the beam in eV. The scale factors correponds to the constants that will
be used to get the matrix in good units and scale. In deed, for instance we choosed an input
vector of 1mm x offset. If you then refer to the part 3.2 Description of the method, you will see
that in this example λ = 0.001. To have the real matrix column we have to multiply our result
by 1

λ which is here 1000. So what we called X scale factor will be 1000. For x’, the input vector
is 0.01radian offset. This leads us to λ = 0.01, and the x’ scale factor will be 100, etc...

Here is the file we use :

1000
100
1000
100
1000
10

Phase scan The phase_scan.exe program should be in the same folder than the astra.exe
program, the distribution file, the six fields files, and the param_phase_scan.txt file. His role is
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to run astra for different phase and produce the different tracking and output files in different
folders. The program will read the parameter file, which have to contain exactly the following
information :

Newrun distribution_filename.ini
Newrun Z_min
Newrun Z_max
Cavity field_file_name without any extension
Cavity frequency
Cavity center position

Distances are float in meters, and frequency in Ghz. To understand the meaning of each terms,
please read the astra instructions about the Newrun and Cavity section (paragraph 3.4.5 and
3.4.6).

Here is an example of this file :

input_particles.ini
0
0.30
3D
3.9
0.15

While running, the program will first ask for the minimal and maximal phase and then the
phase step. After that, it will generates the requiered files in different folders with explicit name,
and run astra. Caution : you will have to press a key between all the astra simulations. If you
planned to see 100 different phases run, then it will take around 6 minutes and you will have to
press a key every 4 seconds...

Dispatch

Matrix test

4.2 The final cavity matrix

Mcav =



1.003 0.300 0.002 0.001 −0.448 0.001
0.020 1.004 −0.002 0.002 −2.991 −0.000
0.000 0.000 1.002 0.300 −0.000 0.000
0.002 −0.000 0.012 1.002 −0.000 0.000
−0.001 −0.001 0.000 −0.001 0.998 0.000
−3.001 −0.450 −0.001 −0.001 0.275 0.999
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Annexes

A more precize numerical calculation of V

Previously in this report, we described a integration method for obtaining V witch considerated
that Ez0 and the sine function were constant between two numerical step. Here, let’s do it more
precisely, integrating the sine. We will start from this general expression for Ez

Ez(z, t) = Ez0(z) sin(ωt + φ)

Remembering that, the particule sees the following field when it travels at c :

Ep
z (z) = Ez(z,

z

c
)

Then :

V =
∫ lc

0
Ep

z .dz =
∑

i

∫ zi+1

zi

Ep
z (z).dz =

∑
i

Ez0(zi)
∫ zi+1

zi

sin(kz + φ)dz

And finally :

V = −
∑

i

Ez0(zi)
k

[cos(kzi+1 + φ)− cos(kzi + φ)] dz ≈ 4.8216.10−3

This gives us a scale factor of 9.3330, which should be more correct that the other numerical
result of 9.3227.

Analytical expression of V

From an analitical modelization of the field map, let’s find an analytical expression which give
us the V and the scale factor. Here, we won’t take in account the two surrounding pipes. Our
z axis starts at the enter of the first cell. According to the field map, we can modelise Ez0, at
x = 1m, like this :

Ez0(z) = −E0 sin(kz)

Numerically, we have, in the field map given by HFSS : E0 = 5.10−2V/m. Then, we multiply it
by at negative sine to get the real time dependent field :

Ez(z, t) = −Ez0(z) sin(ωt)

Once again, let’s remember that, the particule sees the following field when it travels at c :

Ep
z (z) = Ez(z,

z

c
)

We can try to evaluate V :

V =
∫ 5λ/2

0
Ep

z .dz =
∫ 5λ/2

0
E0sin

2(kz)dz

An integration by part, gives us :
V = E0lc − V

And finally :

V =
E0lc

2
≈ 4.8075.10−3

This gives us a scale factor of 9.3607, which is close to the numerical one 9.3227.
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