Site perso : Emmanuel Branlard

E.2 Exemple of a sphere at low energy

The simulation was done with the following parameters:

Table E.2: Parameters used for the benchmarking of the rotation algorithm - exemple of a sphere at low energy
Parameter Value
Distribution type Uniform ellipsoid
Distribution $ \sigma_x$ 1 mm
Distribution $ \sigma_y$ 1 mm
Distribution $ \sigma _z$ 3 mm
Distribution energy $ \mathcal{E}$ 0.1 MeV
Distribution charge $ Q$ -0.25 nC
Rotation axis X
Rotation angle $ \pi/6$
3D grid used $ N\ast_0=5$, $ N\ast_f$=20, $ N\ast_2$=32


Figure E.4: Sphere at low energy: canonical directions
Image sphere-directions

Figure E.5: Rotation algorithm - Longitudinal Field along longitudinal direction. (a) Before the rotation of the fields - (b) After the rotation of the fields - (c) Fields from a distribution not rotated
Image 111-Ez-longi-1BeforeRot(a) Image 111-Ez-longi-2AfterRot(b) Image 111-Ez-longi-3NoRot(c)

Figure E.6: Rotation algorithm - Longitudinal Field along transverse direction. (a) Before the rotation of the fields - (b) After the rotation of the fields - (c) Fields from a distribution not rotated
Image 111-Ez-transvy-1BeforeRot(a) Image 111-Ez-transvy-2AfterRot(b) Image 111-Ez-transvy-3NoRot(c)

Figure E.7: Rotation algorithm - Transverse Field in y direction. (a) Before the rotation of the fields - (b) After the rotation of the fields - (c) Fields from a distribution not rotated
Image 111-Ey-transvy-1BeforeRot(a) Image 111-Ey-transvy-2AfterRot(b) Image 111-Ey-transvy-3NoRot(c)







Emmanuel Branlard