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Chapter 1
Differential Calculus

1.1 Differentiation - DL - Taylor

f(x, t+ dt) = f(x, t) + ∂f

∂t
dt+ 1

2
∂2f

∂t2
dt2 +O(dt2) (1.1)

f(x+ dx, t) = f(x, t) + ∂f

∂x
dx+ 1

2
∂2f

∂x2 dx
2 +O(dx2) (1.2)

f(x+ dx, t+ dt) = f(x, t) + ∂f

∂x
dx+ ∂f

∂x
dx+ ∂2f

∂x∂t
dxdt+ 1

2
∂2f

∂x2 dx
2 + 1

2
∂2f

∂t2
dt2 +O(dx2, dt2)

(1.3)

1.2 Tensors

Einstein’s convention Einstein convention (): implicitly do the sum from 1 to n, where n is
the dimension of the vectorial space considered, on each index that are repeated at least once per
“momome” and on two different “holders”. In an orthonormal base U · V = UiVi, ‖U‖2 = UiUi

In non orthonormal base, a vector can be decomposed on contravariantXi and covariant coordinates
Xi. The covariante coordinates are related to the dual space. X = Xiei

Tensors A tensor of order p is a a p-linear form on E × · · · × E︸ ︷︷ ︸
p

Tensors of order 1 corresponds to

vectors of E 1 and wil be written U . Tensors of order 2 are the bilinear form on E×E, which have
a one-to-one relation to linear applications from E to E(endomorphism). From this isomorphism
between L(E×E,R) and L(E,E), for a given base tensors can be written in matricial form. Tensors
of order 2 will be written T .

T (U ,V ) = UiVjT (ei, ej) = UiTijVj (1.4)

It is emphasized that that tensors are independent of the basis of the vectorial space. The basis
1This is due to the isomorphism between the dual space E∗ consisting of the linear form on E and E. All linear

form from E∗ can be written as a scalar product, and hence be associated to a vector in E

1



only comes to play when a numerical representation of the tensor is sought:

U︸︷︷︸
independent of basis

= Uiei︸︷︷︸
dependent on the basis

(1.5)

Tensorial product Tensorial product of order 1 tensors:

U ⊗ V : E −→ E

V 7−→ (V ·X)U

In particular:
(ei ⊗ ej)(ek) = (ej · ek)ei = δjkei (1.6)

From the definition of the tensorial product of two tensors of first order, it is seen that in this case
the operator ⊗ is an non symetric bilinear application of E × E in L(E,E), and hence is a tensor
of second order, hence the following proposition:

if T = (U ⊗ V ) then T = UiVj ei ⊗ ej = Tij ei ⊗ ej (1.7)

The above is not true reciprocally, a tensor of order 2 is not always written as a tensorial product
of two tensor of two tensors of order 1.

l1 = δij ei ⊗ ej (1.8)

h = f ⊗ g =

f1 g1 f1 g2 f1 g3
f2 g1 f2 g2 f2 g3
f3 g1 f3 g2 f3 g3

 (1.9)

In general a tensorial product between a tensor of order p and a tensor of order q is a tensor of
order p+ q.

Contraction The contraction between a tensor S of order p and a tensor T of order q is a tensor
of order p+ q− 2 obtained by identification of the last index of S and the first index of T . It is an
extension of the scalar product. Examples:

S · T = (Sijk ei ⊗ ej ⊗ ek) · (Tpq ep ⊗ eq) = SijkTkq ei ⊗ ej ⊗ eq (1.10)

T ·U = (Tij ei ⊗ ej) · (Ukek) = TijUj ei (1.11)
U · T = (Uiei) · (Tjk ej ⊗ ek) = UiTik ek = TjiUj ei (1.12)

It should be noted that even though Eq. (1.11) recalls the classic-matrix vector multiplication, the
contraction has actually a more general context. The contraction from Eq. (1.12) resemble the
vector matrix multiplication, but does not require a notion of vector in column.

Double contraction The double contraction consists in performing the contraction twice, and
apply hence to tensors satisfying p + q − 4 ≥ 0. The operator can we written as “··”, “:” or “�”.
An example found in fluid dynamics is the double contraction of tensors of order 2:

S : T = (Sij ei ⊗ ej) : (Tkl ek ⊗ el) = SikTki (1.13)
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Propositions Trace of a tensor of order 2: tr(T ) = T : l1 . Writing this definition in a given base,
will lead to the sum of the diagonal elements of the matricial representation of T in this base. The
definition of the trace in tensorial notation hence confirms the results that the trace of the matricial
representation of an endomorphism in a given basis is an invariant from one base to another.

The transposed tensor of a tensor T of order 2 satisfies : tT (U ,V ) = T (V ,U). Tensors of order 2
can be decomposed into a symmetric and antisymmetric part as:

T = 1
2
(
T +tT

)
+ 1

2
(
T −tT

)
= Ts + Ta (1.14)

A tensor can also be decomposed on a spherical and deviation part as :

T = T (s) + T (d) (1.15)

with T (s) = 1
3 tr(T ) l1 , and T (d) = T − T (s) and hence tr(T ) = 0.

Summary Summary and usual cases in an space with orthonormal base:

U · V = (Uiei) · (Vjej) = UiVj(ei · ej) = UiVi (1.16)
U ⊗ V = (Uiei)⊗ (Vjej) = UiVj ei ⊗ ej (1.17)
U · T = (Uiei) · (Tjk ej ⊗ ek) = UiTik ek = TjiUj ei (1.18)
S : T = (Sij ei ⊗ ej) : (Tkl ek ⊗ el) = SikTki (1.19)

1.3 Vectorial analysis

Given a vector and a base such that x = xiei, the elementary displacement is defined as:

dx = d(xiei) = dxiei + xidei (1.20)

Differentiation of a scalar function - introducing the gradient

ϕ : E −→ R
x 7−→ ϕ(x) = ϕ(x1, x2, . . . , xn)

The function ϕ is a function of several variables, and it’s elementary variation at the point x can
be written at first order as follow:

dϕ(x) = ϕ(x+ dx)− ϕ(x) = ϕ(x) + ∂iϕ(x) dxi + o(‖dx‖)− ϕ(x) (1.21)
= ∂iϕ(x) dxi + o(‖dx‖) (1.22)

The elementary variation of ϕ is at first order a linear form with respect to dx. This linear form
is a tensor of order 1 referred to as the gradient defined as :

dϕ
∼= gradϕ · dx (exact at first order) (1.23)

The above definition is independent of the basis chosen. Example for a three dimensional space
with a fixed Cartesian base:

dUx(x) = gradUx(x) = ∂Ux
∂x

(x)dx+ ∂Ux
∂z

(x)dy + ∂Ux
∂z

(x)dz (1.24)
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If the base is moving one has to use Eq. (1.20), project the moving basis into a fixed one, and use
Eq. (1.23) to find the gradient expression by identification.

Further, the derivation with respect to a direction can be defined. If n is a unitary vector, the
derivative of φ with respect to the direction defined by n at point x, is written ϕ′(x,n) or ∂ϕ/∂n
and defined as:

∂ϕ

∂n
≡ ϕ′(x,n) ∧= lim

h→0

ϕ(x+ hn)− ϕ(x)
h

= ∂iϕ(x)ni + o(‖n‖) (1.25)

And hence at first order:
∂ϕ

∂n
≡ ϕ′(x,n) ∼= gradϕ(x) · n (1.26)

It is also interesting to consider the composition of a function with vectorial values V : t 7→ V (t),
assuming it’s derivability, and the differentiability of ϕ, the composed function g : t 7→ ϕ(V (t))
has also derivability and:

ġ(t) = gradϕ(V (t)) · V̇ (t) (1.27)

Gradient of a first order tensor The generalisation of the definition of the gradient is done
as:

dU = gradU · dX (1.28)

In the general case where the base is not fixed:

dU = ∂iU dxi = ∂i(Ujej) dxi = (∂iUj ej + Uj ∂jei︸︷︷︸
γk

ijek

)dxi =
(
∂jUi + Ukγ

j
ki

)
︸ ︷︷ ︸(

gradU
)

ij

ejdxi (1.29)

The coordinates of the derivatives of the base coefficient, written γ above, are known as Christoffel’s
coefficient. In case of a fixed base they are identically zero and the gradient is simply:

gradU = ∂jUi ei ⊗ ej (1.30)

Developing these terms in three dimension with a cartesian base leads to the following matricial
representation:

gradU = ∇U =


∂Ux
∂x

∂Ux
∂y

∂Ux
∂z

∂Uy

∂x
∂Uy

∂y
∂Uy

∂z

∂Uz
∂x

∂Uz
∂y

∂Uz
∂z

 =


t∇Ux
t∇Uy
t∇Uz

 (1.31)

The transpose notation above assumes a representation of the gradient in column notation, but
strictly speaking tensors(and hence the gradient) are independent of the notion of columns and
rows introduced in matrix formalism.

Divergence The divergence tensor is defined as the double contraction between the gradient of
a tensor of order p ≥ 1 with the identity tensor of order 2. For instance the divergence of a tensor
of order 1:

divU ∧= gradU : l1 = tr(gradU) (1.32)

Two definitions of the divergence of a tensor of order 2 is found in the litterature[?], Some authors
also omit the distinction between using covariante and contravariante coordinates which could lead
to confusion. In this document the notation div is consisten with the definition given above. In
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the book of Cottet[?] a different definition of the divergence is found, and will further be written
div2. For a tensor of order two the two definition of the divergence are:

divT = ∂j(Tij)ei (1.33)
div2 T = ∂j(Tji)ei = ∂i(Tij)ej (1.34)

As an illustration of the difference, a useful relation in fluid dynamics is written with these two
definitions for two vectors u and ω:

div(ω ⊗ u) = (u · ∇)ω + ω divu (1.35)
div2(u⊗ ω) = (u · ∇)ω + ω divu (1.36)

Above, the definition of the tensorial product is the same, only the definition of the divergence
differs. It can be seen that the same result is obtained by inverting the order of the tensorial
product but care has to be taken in the notations. It is worth mentionning, that noting T̂ the
tensor of T in covariate coordinates, then if u is a vector written in contravariate coordinates then:

div(u⊗ T̂ ) = (u · ∇)T̂ + T̂ divu (1.37)

For a fix orthonormal basis:

order tensor gradient divergence

0 ϕ gradφ NA

1 U = Uiei gradU = ∂jUi ei ⊗ ej ∇ ·U = ∂iUi

2 T = Tij ei ⊗ ej ∇T = ∂kTij ei ⊗ ej ⊗ ek ∇ · T = ∂jTij ei

Rotational The definition of the rotational can be done in different ways using for instance
pseudo-vectors. The rotational of a tensor U ∈ R3, noted curlU or ∇×U is defined such that:

∀V ∈ R3 (curlU)× V = (gradU −tgradU) ·U (1.38)

In a orthonormal and fix base, the usual relation is found and indeed satisfy the definition of
Eq. (1.38) :

curlU ≡ ∇×U =

Uz,y − Uy,zUx,z − Uz,x
Uy,x − Ux,y

 (1.39)

It should be noted that the notation ∇× can be confusing and the sign ∇ should not be replaced
by a “derivative” vector for basis different that fix orthonormal bases. Doing so to perform the
computation of the rotational would give incorrect results.

Laplacian The Laplacian of a tensor of order p, noted ∆ or ∇2 is the divergence of the gradient
of this tensor, which is also a tensor of order p: By this definition:

∆ϕ ≡ ∇2 ∧= div(gradϕ) ≡ ∇ · ∇ϕ (1.40)

∆U ≡ ∇2U
∧= div(gradU) ≡ ∇ ·∇U (1.41)

In the fix orthonormal base: ∆ϕ = ∂2
i ϕ

∆ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 (1.42)
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Operator U · ∇ The operator U · ∇ is often used in fluid dynamics instead of the expression
grad • ·U . It’s definition is Ui ∂

∂xi
using Einstein’s convention.

(U · ∇)ϕ = Ui∂iϕ (1.43)
(U · ∇)V = Ui∂i(Vjej) (1.44)

In particular, for a fixed cartesian system: (U · ∇)V = Ui∂i(Vj) ej

1.4 Vector and field formalism

Differential operations Vector calculus studies various differential operators defined on scalar or
vector fields, which are typically expressed in terms of the del operator (∇). The four most impor-
tant differential operations in vector calculus are: Operation Notation Description Domain/Range
Gradient grad(f) = ∇f Measures the rate and direction of change in a scalar field. Maps scalar
fields to vector fields. Curl curl(F) = ∇ × F Measures the tendency to rotate about a point in
a vector field. Maps vector fields to (pseudo)vector fields. Divergence div(F) = ∇ · F Measures
the magnitude of a source or sink at a given point in a vector field. Maps vector fields to scalar
fields. Laplacian ∆f = ∇2f = ∇ · ∇f A composition of the divergence and gradient operations.
Maps scalar fields to scalar fields. where the curl and divergence differ because the former uses
a cross product and the latter a dot product, and f denotes a scalar field and F denotes a vector
field. A quantity called the Jacobian is useful for studying functions when both the domain and
range of the function are multivariable, such as a change of variables during integration. [edit]
Theorems Likewise, there are several important theorems related to these operators which gener-
alize the fundamental theorem of calculus to higher dimensions: Theorem Statement Description
Gradient theorem ϕ (q) − ϕ (p) =

∫
L |p→q∇ϕ · drThe line integral through a gradient (vector)

field equals the difference in its scalar field at the endpoints of the curve L. Green’s theorem∫∫
Σ∈R2

(
∂M
∂x −

∂L
∂y

)
dA =

∮
∂Σ (Ldx+M dy) The integral of the scalar curl of a vector field over

some region in the plane equals the line integral of the vector field over the closed curve bounding
the region. Stokes’ theorem

∫∫
Σ∈R3 ∇×F · dΣ =

∮
∂Σ F · dr The integral of the curl of a vector field

over a surface in R3 equals the line integral of the vector field over the closed curve bounding the
surface. Divergence theorem

∫∫∫
V

(∇ · F) dV =
∫∫
∂V⊂⊃ F · dS The integral of the divergence of a vector

field over some solid equals the integral of the flux through the closed surface bounding the solid.

1.4.1 Fields Operators

Operators definition

grad f = ∇f = ∂ifi Rn 7−→ Rn+1 (1.45)
div f = ∇· f = Rn 7−→ Rn−1 (1.46)

curl f = ∇× f = Rn 7−→ Rn (1.47)
(1.48)

1.4.2 Important theorems

Green
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Green-Ostrogradski/Divergence theorem For S a closed surface surrounding a volume V
and f a piecewise continous and continuously differentiable vector field of any order:∫

∂Ω(t)

f · n dS =
∫

Ω(t)

div (f) dv (1.49)

If a discontinuity surface Σ is present in the volume, Eq. (1.49) is applied on both side of Σ using
the notations from Fig. 1.1 where the vector n goes from domain 1 to domain 2. It yields to the
general divergence theorem:∫

∂Ω(t)

f · n dS =
∫

Ω(t)

div (f) dv +
∫

Σ
JfK · n1→2 dΣ (1.50)

where JfK = f2 − f1 is the jump of the variable f value across the discontinuity surface Σ. This
notation has to be read along with Fig. 1.1 for the convention of the vector n and the two domains.

Figure 1.1: Bla bla bla

Discontinuity surface can be: chock waves in supersonic flow, vorticity sheets in shear flow, or
boundaries between two non mixing flow. Displacement of this surface within the volume is allowed,
and will be further written VΣ. A typical example of utilization of Eq. (1.49) would be:∫

∂Ω(t)

ρV (U · n) dS =
∫

Ω(t)

div ρV ⊗U dv +
∫

Σ
JρV ⊗UK · n dΣ (1.51)

A variable q(M, t) such that its field div(qV ) = 0 is said to be conservative.

Stokes equation ∮
c
f · τdl =

∫
S

curl f · n dS (1.52)

1.4.3 Relations

Useful cases
(f ⊗ g) · n = f (g · n) (1.53)

(gradU) · V = (∇U) · V = (V · ∇)U (1.54)

Integral of a gradient on a closed path - conservative field: Integral on a closed path: For
any closed path C, using Stokes theorem and “curl(grad) ≡ 0”:∮

C
∇f · dl = 0 (1.55)
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A conservative field F is such that its curl is identically zero: curlF ≡ 0. It is hence possible to
define a scalar potential Φ such that F = −∇Φ Hence from Eq. (1.55):∮

C(t)
F · dl = 0 (1.56)

Useful relations between operators

div(f ⊗U) = ∇f ·U + f div(U) (1.57)
div(ρf ⊗U) = ρ∇f ·U + f div(ρU) (1.58)
curl(curlU) = grad(divU)−∇2U (1.59)

(gradU) ·U = curlU ×U + grad U
2

2 (1.60)

Divergence operator:

div(curlU) = 0 ∇ · (∇×U) = 0
div(grad f) = ∆f ∇ · (∇f) = ∇2f
div(∆U) = ∆(divU) ∇ · (∇2U) = ∇2(∇ ·U)
div fU = f divU +U · grad f ∇ · (fU) = f∇ ·U +U · ∇f
div(U × V ) = curlU · V −U · curlV ∇ · (U×V) = (∇×U) ·V−U · (∇×V)
div(gradU) = ∆U ∇ · (∇U) = ∇2U

div(tgradU) = grad(divU) ∇ ·t (∇U) = ∇(∇ ·U)
div(U ⊗ V ) = U divV + gradU · V ∇ · (U ⊗ V ) = U∇ · V +∇U · V
div(fT ) = f divT + T · grad f ∇ · (fT ) = f∇ · T + T · grad f
div(T ·U) = divtT ·U + T : gradU ∇ · (T ·U) = (∇ ·tT ) ·U + T : ∇U
div(f l1 ) = grad f ∇ · f l1 = ∇f

Rotational operator:

curl(grad f) = 0 ∇× (∇f) = 0
curl(curlU) = grad(divU)−∆U ∇× (∇×U) = ∇(∇ ·U)−∇2U
curl(∆U) = ∆(curlU) ∇× (∇2U) = ∇2(∇×U)
curl(fU) = f curlU + grad f ×U ∇× (fU) = f∇×U + (∇f)×U
curl(U × V ) = gradU · V − gradV ·U ∇× (U × V ) = (V · ∇)U − (U · ∇)V

+U divV − V divU +(∇ · V )U − (∇ ·U)V

Gradient operator:

grad(fg) = f grad g + g grad f ∇(fg) = f∇g + g∇f
grad(U · V ) = gradU · V + gradV ·U ∇(U · V ) = (V · ∇)U ·+(U · ∇)V

+U × curlV + V × curlU +U × (∇× V ) + V × (∇×U)
(gradU) ·U = curlU ×U + grad U2

2 (U · ∇)U = (∇×U)×U +∇U2

2
grad fV = fgradV + V ·tgrad f

8


	1 Differential Calculus
	1.1 Differentiation - DL - Taylor
	1.2 Tensors
	1.3 Vectorial analysis
	1.4 Vector and field formalism
	1.4.1 Fields Operators
	1.4.2 Important theorems
	1.4.3 Relations
	References



