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Abstract
The focus of this study is the use of a lifting-line free wake vortex code to derive
tip-loss corrections that could be implemented in Blade Element Momentum
(BEM) codes. The different theories and three dimensional effects that are
related to tip-losses are progressively introduced: lifting-line concepts, wake
dynamics and its vortex modelling, far-wake analysis. The different tip-loss
corrections found in the literature are reviewed with a focus on the main the-
ories, namely the work of Betz, Prandtl, Goldstein and Theodorsen, and the
different implementations in BEM codes found in the literature are presented.
The method of Okulov to compute Goldstein’s factor at a reasonable computa-
tional cost is provided with details. The computation of Goldstein’s factor being
accessible, a method to use this factor in the BEM method is presented. Vari-
ous form of Prandtl’s tip-loss factor are also listed for reference. Tip-losses are
investigated using a free wake vortex code and with Computational Fluid Dy-
namics(CFD), and results from both approaches are compared and discussed.
For the use of CFD data, the question of definition of the local induction factor
on the blade is risen and different method to define it are investigated. The
author introduces the naming of “performance tip-loss” factor, which is a cor-
rection to the airfoil coefficients due to the tri-dimensionality of the flow at the
tip. A preliminary model for the performance tip-loss function is introduced.
For the representation of various circulation shapes, a new method using the
formulation of Bézier curves is described and developed. Such method can be
widely used to describe curves such as lift, circulation or chord distribution.
Last, a method to determine tip-losses using a vortex code is described and im-
plemented. From this method, a new tip-loss model is implemented in a BEM
code in order to reproduce the 3D effects inherently present in a vortex code.
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Introduction

Context and motivations Early investigations of wind turbine performances revealed that the
power produced was lower than the one expected by the blade element momentum theory, the
production was as if the size of the rotor had been reduced in a proportion of approximately 3%.
The main reason for this power loss is the circulation of flow around the tip of the blade which is a
well known phenomenon in the study of aircraft wings where a vortex is emitted at the extremity
of each wing. These vortices are commonly known as they can be observed under some particular
pressure and humidity characteristics of the air. At the beginning of the 20th century, Prandtl
was among the first to investigate the losses accounted by these vortices for a wing and later for
a propeller. The losses appear for the former when the wing has a finite span, and for the later
when the rotating devises has a finite number of blades. Prandtl’s research led to the introduction
of a tip-loss factor which is now widely used in wind turbine aerodynamic codes to account for the
tip-losses. The load reduction at the tip due to this effect has a dramatic influence on the produced
power because the tip being at a great distance to the hub it has the possibility to generate a lot
of torque by a simple lever arm rule. Summing up over the entire range of operation of a wind
turbine these losses can represent a reduction of 10% on the Annual Energy Production. A proper
blade design can reduce the power losses and thus increase the productivity of the blade but this
require of course a better understanding of tip-losses. It is the purpose of this document to focus
on this aspect.

Approach description The notion of tip-losses requires for its understanding a wide picture of
the different theories applied to wind turbines but also general notions of wing and wind turbines 3D
aerodynamics. Historically, tip-losses appeared in the context of investigation of optimal propellers
with an important contribution from authors of the German school: Prandtl, Betz, and Goldstein.
Glauert in a later work applied these notions and integrated them into a wind turbine performance
prediction algorithm called the Blade Element Momentum(BEM) theory. The formulations and
notions of these theories will be presented in this study. A pragmatic approach will have to be
taken when studying the different tip-loss functions and their implementations for they have and
are still rising debates in the scientific community. These foundations established, tools like vortex
codes and Computational Fluid Dynamics (CFD) will be used to investigate further the notion of
tip-losses and possibly improve the performances of BEM codes.

Content This document is structured with a succession of six chapters which follow the approach
mentioned in the above paragraph. All chapters are progressively built upon each other, except for
chapters 4 and 5 that can be read in different order. Different chapters were placed in appendices
for a clearer and smoother reading, despite the fact that a large part of the corpus rely on them.
In a first chapter, the different theories and three dimensional effects that are connected to tip-
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losses are progressively introduced. In a second time, the different tip-loss corrections found in the
literature are reviewed with a focus on the main theories and their implementations. The next
chapters both investigate tip-losses using a specific code. The focus of this study was to use a
vortex code to derive tip-loss corrections that could be implemented in BEM codes. The study of
CFD data give rise to more discussion and interesting results comparisons which be summarized
in a final chapter.

Contribution from this work The different aspects on which this study contributes to existing
work on the matter of tip-losses can be listed as follow:

- This document is the first one to the author’s knowledge to be entirely dedicated to wind
turbine tip-losses. Along this line, a listing of all the different tip-loss corrections implemented
was performed and important distinctions were made.

- In this study, a new method to determine tip-losses using a vortex code has been described
and implemented. From this method, a new tip-loss model was implemented in a BEM code
in order to reproduce the 3D effects inherently present in a vortex code.

- A method to fit curves using the formulation of Bézier curves was described and developed.
Such method can be widely used to describe curves such as lift, circulation or chord distribu-
tion.

- The author introduced the naming of “performance tip-loss” factor, which is a correction to
the airfoil coefficients due to the tri-dimensionality of the flow at the tip. Such corrections have
been investigated for instance in [98] in a slightly different way. A model for the performance
tip-loss function is introduced in Sect. 5.2.6.

- In Appendix A, a detailed description of Goldstein’s article from 1929[36] can be found. This
article is generally considered as a complex article so that the details presented in this report
is intended to help the curious reader to go quickly through this essential reference on the
topic of tip-losses.

- In Sect. A.2, the method of Okulov[79] to compute Goldstein’s factor at a reasonable com-
putational cost is provided with more details than in the original article in order to share
it.

- Eighth order polynomial that fits Goldstein’s factor for different operating conditions are also
provided in Sect. A.4.

- The computation of Goldstein’s factor being accessible, a method to use this factor in the
BEM method was presented in Sect. 3.4.1.

- Analysis from [43] and [48] use CFD to investigate the axial induction. In this study similar
analysis were performed with focus this time on the tip-loss factor.

- Along the same line than the point above, the question of definition of the local induction
factor aB on the blade was risen. Different method to define it were investigated in Sect. 5.1

- All the figures are done with the wind turbine convention, rotating clockwise and with a
relative wake velocity in the opposite of the stream direction. When studying the theory of
helical wakes, most references uses different or inconsistent conventions.

About this document This document was entirely written by the author. All the figures present
in this document are from the author, either drawn or generated using Matlab or Mathematica. If
a figure was inspired by others a reference is mentioned. The author borrowed figures from his own
previous work, mainly[15]. All references cited in this document have been consulted by the author
except for the following which were not available[90][68][91][16][89][45][95][21]. This document was
written in LATEX using a template from the author. The paper size chosen is A4.

E. Branlard 2



CONTENTS

Notations

Lower case letters
a Axial induction factor
a′ Tangential induction factor
aB Axial induction factor local to the blade
â Axial induction factor from 2D momentum theory
a Azimuthally averaged axial induction factor
c Chord
h Helix pitch
hB Apparent pitch h/B
h Normalized pitch h/R
l Helix torsional parameter
l Normalized torsional parameter l/R
nrot Rotational speed in revolutions per second: Ω/(2π)
p Static pressure
r Radial position along the blade
r Dimensionless radial position r/R
s Normal distance between two vortex sheets
uiθ Tangential induced velocity
uiz Axial induced velocity
w Wake relative longitudinal velocity
z0 Surface roughness length

Upper case letters
A Area
AR see Abbreviations
B Number of blades
CΓ Dimensionless circulation
Cd Drag coefficients
Cl Lift coefficients
Cn Normal component of the aerodynamic coefficients
Cp Power coefficient
CQ Torque coefficient
Ct Tangential component of the aerodynamic coefficients
CT Thrust coefficient
D Drag force
D Rotor diameter
F Tip-loss factor
Fa Tip-loss factor based on axial induction
FΓ Tip-loss factor based on circulation
FCl Performance tip-loss factor
FGo Goldstein’s tip-loss factor
FGl Glauert’s tip-loss factor
FPr Prandtl’s tip-loss factor
FSh Shen’s tip-loss factor
It Turbulence intensity
L Lift force
P Power
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Un Velocity normal to the rotor
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Vrel Relative velocity
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Lower case Greek letters
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λ Tip speed ratio = ΩR/U0
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τ Shear stress
φ Flow angle
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ω Rotational speed of the wake
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Φ Velocity Potential
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Abbreviations
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Chapter 1
Tip-losses: context and challenges

1.1 Tip-losses in the historical context of wind turbine aerody-
namics

The origin of the most common tip-loss correction, Prandtl’s correction, comes from the broader
problem of loss minimization for lifting devises. An historical review of the topic will reveal the
intellectual path followed by the scientists at the beginning of the 20th century with the study
of problems of growing complexity, while also shedding light on the different theoretical tools
available and on the assumptions under which they operate. The problem is first taken as the
determination of induced power losses in general to further focus on the tip-loss aspects only.
Notions of local aerodynamics of the blade will be required to understand how tip-losses can affect
the angle of attack and the airfoil performances. The tip-loss factor will be defined in Sect. 1.3
where preliminary considerations on this challenging topic will be introduced.

1.1.1 Losses inherent to a rotating extracting device

1D momentum theory - Rankine-Froude’s theory The 1D momentum theory is the simplest
method to assess the induced power losses. It’s derivation has been obtained by R. Froude[29] from
the discussions and contributions of Rankine[89] and W.Froude[30]. In this theory the flow is
assumed to be purely axial with no rotational motion and the induced velocities at the rotor are
uniform over the whole swept area. The rotor is replaced by the concept of an actuator disk, which is
responsible for creating an artificial pressure drop while allowing the flow to be continuous through
it. The actuator disk can be seen as two contra-rotative rotors with infinite number of blades but
no details on the actual energy extracting device are used and its rotation is not even implied.
The flow slows down to a velocity U0 − ui at the rotor disk across which it releases momentum
due to the pressure drop created by the actuator disk. The flow returns to its original pressure far
downstream where it has eventually reached a velocity of U0−2ui according to Bernoulli’s theorem
and the conservation of mass. The accurate demonstration of this result needs to take into account
the pressure force on the streamtube. The proper way to derive the result is to consider it as
the limit of a finite case where either the streamtube is in an channel[35][38], either it is pressure-
constrained at its boundary[38], and then expand the walls to infinity. Most authors ignore this
problem or implicitly add another assumption to this theory by using the fact that: the streamtube
is surrounded by atmospheric pressure, or the longitudinal velocity in the by-pass flow is equal to
the infinite velocity[42].
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Figure 1.1: One dimensional momentum theory.
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Parallel work down within 5 years from the authors Lanchester[58, (1915)], Joukowski1[51, (1920)]
and Betz[10, (1920)], led to the theoretical limit of power than can be extracted: the Betz-Joukowski
limit2 with a value of power coefficient of 16/27. It should be noted that some authors found that
the power coefficient tends to infinity for low tip speed ratio but it has been argued[104] that this
is the result of neglecting the pressure forces on the streamtube for highly-loaded rotors. Below, it
will be seen that the theoretical Betz-Joukowski limit has to be reduced in practice while releasing
assumptions from the momentum theory.

2D momentum theory The 2D momentum theory as derived by Joukowski[50] in 1918, reported
by Glauert[35] in 1935 and further formalized in 2010 by Sørensen and van Kuik[104] uses an
actuator disk that impart a pressure drop and a tangential rotational speed to the fluid without
discontinuity in the axial and radial flow passing the disk. No friction losses are considered in this
theory which is why the rotation of the flow has to be introduced artificially by the actuator disk and
also why the rotational velocity in front of the disk is zero. This theory allows for radial variations
of velocities and pressure at the rotor and at the wake, and accounts for pressure changes due to
wake rotation. Nevertheless the theory leads to a system of equations which is not closed. Either
two variables needs to be given or assumptions made to simplify the theory. The Joukowski model
uses the assumption of constant circulation, which imply that the flow is irrotational everywhere
except along the axis of rotation and that the rotational momentum of the slipstream in the wake
ωr2 is constant for each radial elements. Under this assumption, it is found that in general the
axial induced velocity in the wake is not twice the one at the rotor. Nevertheless, the results get
really close for tip speed ratio above 2. To avoid inconsistency near the rotor center, a Rankine
vortex core can be used instead of a line vortex for a better representation of the flow[104]. In this
case, the equations become more complex, but still lead to a closed form solution.

0

+
−

w

dr

r θ

er θ̇

eθ

ez

e′θ

e′r

Ω

ω

ωw

rw

Figure 1.2: Two-dimensional momentum theory notation scheme.

Simplified equations are obtained by adding the assumption that the rotor is lightly loaded and the
rotation of the wake is small compared to the rotational speed of the rotor. This can be interpreted
as the pressure in the far wake equals the pressure upstream. Consequently the thrust and axial
induction results from the 1D momentum apply and the tangential axial induction factor can be
determined as a function of the local speed ratio and the axial induction factor. This relation is
often drawn as a velocity triangle and can also be interpreted as an energy equation. The final

1Nikolai Egorovich Zhukovsky, different writing of this name can be found when using latin alphabet.
2In 2007[113] the naming Lanchester-Betz-Joukowski limit was suggested, but further historical research[81] at-

tributed this result to the independent work of Betz and Joukowski.
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equations resulting from the use of 2D momentum theory results linked to 1D momentum results
will be further referred to as “simplified-2D momentum theory”. It should be kept in mind that
only under the assumption of this simplified theory holds the fact that the induced velocity in the
wake is twice the one at the rotor.

1.1.2 Introducing notions used for the study of three dimensional effects

Limitation of momentum theory The methods mentioned above do no fully capture the
variations of the flow nor the physics of the energy extraction device. The momentum theory gives
an upper limit for the maximum power that can be extracted from the flow but does not give
indication on the design of the device itself. Also the assumption of uniform induced velocity at the
rotor used in the momentum theory does not hold for a real flow where three dimensional effects
takes place and the rotor obviously does not have an infinite number of blades. One example of
these effects in the appearance of vortices at the tip of a finite span wing as described among the
following paragraphs. Tip-vortices have been first investigated for aircrafts by Prandtl who derived
the lifting line theory to determine the losses related to this vorticity.

Simulation of actuator disks Under the 1D and simplified-2D momentum theory, the induc-
tions factors are assumed uniform over the entire disk. The validity of these assumptions were
studied using computational fluid dynamic tools to model the actuator disk[103, 67, 73, 66]. Re-
sults from these analysis showed that the axial velocity was underestimated(a overestimated) in
the inner part of the disk due to the neglecting of the pressure term from wake rotation. On the
outer part of the blade the axial velocity is overestimated(a underestimated) due to the neglecting
of the radial expansion of the streamtube. The assumption of uniform axial induction factor is thus
not valid, and it will be expected to be, among others, a function of the radius:

a = a(r, . . .) (1.1)

Such variations are captured by the general 2D momentum theory in which the axial induction is
purely a function of radius, written in this document â = â(r). Despite this radial-dependency, it
is worth mentioning that using both a simple vortex model and a actuator disk model, it has been
found[110] that each annular element seem to behaves locally as predicted by the 1D momentum
theory, meaning that in a first approximation each annular strip can be reasonably considered
independent.

Finite number of blades The concept of actuator disk used previously is equivalent to the
assumption of infinite number of blades, which is that all particles passing through the disk will
experience the same change of momentum due to the presence of the blades. This no longer holds
for a rotor with a finite number of blades for which the local axial induction will be larger close to
the blades than in between the blades. As a result of this, an azimuthal dependency of the axial
induction factor should be accounted for on top of the radial dependency mentioned in the above
paragraph, viz.

a = a(r, ψ, . . .) (1.2)
The local induction factor at the blade which characterize the incoming speed on the blade and
thus determine the local aerodynamic load is written distinctively aB. The average axial induction
factor a(r) is defined as:

a(r) = 1
2π

∫ 2π

0
a(r, ψ)dψ [ - ] (1.3)

In the case of infinite number of blade aB and a are the same. Axisymmetric flows, i.e. flow
azimuthally independent such as the one described by 2D momentum or 2D vortex theories can
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only be found for wind turbines with infinite number of blades. With finite number of blades, these
theories no longer apply but are still used in BEM codes by introduction of a “tip-loss factor” (see
discussion on Sect. 1.3 and Sect. 3.2).

Tip vortex Complex aerodynamic laws3 causes pressure differences to arise between the two
sides of an airfoil which in turn result in aerodynamic forces. The low pressure upper surface is
called the suction side and the lower surface the pressure side. The pressure difference has to vanish
if no airfoil is present so that pressure equalization between the pressure and the suction side should
occur at the extremity of any lifting surface such as an aircraft wing or a wind turbine blade. This
causes a spanwise pressure gradient so that the flow from the lower surface will go around the
blade tip to reach the upper surface generating a vortex known as a tip-vortex. The higher the
loading, the higher the pressure gradient and hence the intensity of the tip-vortex. The pressure
gradient will imply a radial motion with the flow from the lower surface having a radial component
heading towards the tip while the flow from the upper surface will go in the other direction. This
is illustrated on Fig. 1.3, and CFD results example are shown in Sect. D.4.

Upper surface
Pressure Side

Figure 1.3: Tip-vortex formation and radial flow on the upper and lower surface at the tip. The flow from
the upper surface has a radial component towards the root, while the flow from the pressure side is directed
towards the tip.

When meeting at the trailing edge the flow from the two surfaces reaches a common axial velocity
but keeps this radial difference of velocity. This jump in tangential velocity has to be associated
with a vortex sheet which is known to have the properties of such discontinuity surface. This vortex
sheet is formed at the trailing edge and for this reason will be referred to as trailing vorticity. The
tangential velocities stay discontinuous across this sheet whereas the pressure is continuous. The
intensity of this vortex sheet is directly related to the jump of tangential velocity:

JVtK = Γ× n (1.4)

In fact, the tip-vortices observed are the result from the roll-up of the vortex sheet which occur
under the influence of the induced velocities created from the whole vortex sheet. The notion of
induced velocity will be developed below.

Vortices in the context of potential flow Under the assumption of incompressible and irrota-
tional flow, the equations of motion reduce to the well known Laplace’s equation where the velocity
is expressed by a potential. Among the particular solutions from this equation lay the vortex,
source and doublet solutions. The linearity of Laplace’s equation implies that any potential flow
can be described as a combination of these elementary solutions if properly distributed to satisfy
the boundary conditions. This makes the foundations for numerical vortex methods. For profiled
bodies under small angles of attack, separation can be omitted and the assumptions of potential
flow can be used to determine the lift force. Vortices in viscous flow will be discussed in section
Sect. 1.1.6.

3Laws that does not involve wrong assertions such as “upper and lower paths have different lengths”. Rigorous
understanding of lift can be found in[11]
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Upwash

Downwash

Upwash

Figure 1.4: Formation of tip vortices at the tip of a wing and resulting induced velocities in the wake.

Notion of induced drag

Kutta-Joukowski relation At this stage it is required to introduce the Kutta-Joukowski relation
which is extensively used in aerodynamics. This relation strictly applies to potential flows but is
commonly used in the presence of viscosity as well in a fashion described below. The Kutta-
Joukowski theorem named from the two authors who developed it independently at the beginning
of the 20th century, states that the force per unit of span at a given point is related to the velocity
and the circulation around this point:

L = ρV rel × Γ [N/m] (1.5)
This direct relationship between lift and circulation is the foundations for lifting line theories where
the airfoil is replaced by a vortex filament. The assumptions of the Kutta-Joukowski relation are
often relaxed and the frictional Drag is introduced4. The force obtained from the Kutta-Joukowski
theorem contributes fully to the lift. The drag is calculated if the lift over drag ratio εl/d of the
airfoil is known. The drag has the same direction as the incoming flow and is obtained as:

D = ‖L‖
εl/d

V rel
‖V rel‖

= 1
εl/d

ρΓV rel, [N/m] (1.6)

In the above the velocity Vrel refers to the velocity projected into the cross sectional plane of the
airfoil.

Biot-Savart law The Biot-Savart law is named after the two scientists who developed it in 1820
for application in induction in electromagnetism. It also applies for aerodynamics to determine
the velocity induced by a vortex distribution. This law is obtained from the classical resolution
of Poisson’s equation by convolution with the Green function. The velocity field produced at the
point M(x, y, z) by a volumic vortex distribution γ in a domain Ω is found as:

ui(M) = 1
4π ·

∫
Ω

γ ×M0M

‖M0M‖3
dΩ(M0) (1.7)

Notion of induced velocity The finite span of a wing generates vorticity which propagates in
the wake. The term “induced velocity” is used to refer to the part of the total velocity field which is
different from the uniform infinite velocity upstream. In potential flows, this field can be associated
for instance with a distribution of sources and vortices. There is a complete equivalence between
the knowledge of the distribution of sources and vortices and their associated wind field. There is
thus no cause and effect relationship between them, so that the term “induced” is considered by
some authors inappropriate[25]. This notion is found in 2D unsteady flow where vorticity is shed
and in three dimensions due to the formation of a wake. It is introduced artificially to highlight
the differences with 2D steady flow.

4The Pressure drag is zero in potential flow, which is D’Alembert’s paradox.
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In three dimensional flow the wake induces a downwash5 velocity at any radial position of the wing
so that the local angle of attack is reduced compared to the one expected if calculated from the
infinite upstream velocity. The actual lift can thus be seen as rotated accordingly downstream
and if projected on the direction of the upstream velocity, a force component colinear with the
upstream velocity is found. This force is called drag induced by the lift in aircraft terminology, it
can represent up to 80% of the total drag in climb and account for about 40% of the fuel used in
a commercial planes[57]. Figure 1.5 illustrates how the component of the lift induces drag due to
the downwash.

L L0

U0
αi

U
UiDi

Figure 1.5: Illustration of the notion of induced drag

Loss minimization The apparition of losses due to three dimensional effects raises the challenge
of minimizing these losses. For this reason many investigations have been carried out in order to
find the optimal lift or circulation distribution that would minimize the induced loss for a wing,
a propeller or a rotor. The theoretical work concerning wings is attributed to Prandtl[86] and
Munk[76], for propellers and air-screw to Betz[9], Prandtl(in the appendix to Betz article), and
Goldstein[36]. Later, minimum induced losses for wind mills, propellers and helicopters has been
investigated by Larrabee[59] and is still studied with new numerical methods[19]. The motivation
for these investigation is that the losses can be minimized for a given thrust if an efficient circulation
distribution is present at the rotor, and thus if an efficient design is implemented.

1.1.3 Description of the wake dynamics

In this section three dimensional effects which concerns the structure and dynamics of the wake
that forms behind a turbine is presented. The description of 3D aerodynamic effects which affects
the performance of the blade airfoil locally is discussed in a separate section (Sect. 1.2). References
in aerodynamics appreciated by the author are [12] and [46]. For specific 3D wind turbine aerody-
namics the following references can be used [17, 70, 42] which are in turn highly inspired by the
work of Glauert[35].

Generality for wings To describe precisely the vorticity system associated with a wing, the
distinction between bound, trailed and shed circulation is to be done. As seen from the Kutta-
Joukowski theorem in Eq. (1.5), the lift from a wing is associated with a circulation around the
airfoil called bound circulation and further noted Γ. In stationary flow, this bound circulation
corresponds to the starting vortex generated when the upstream flow started its motion according
to Kelvin’s theorem. Due a consequence of Helmotz’s theorem stating that vortex line going along
the wing span cannot end in the fluid, the vorticity associated to this circulation has to be trailed
into the wake from the trailing edge and the wing extremities(the blade root and the tip for a
rotor). This streamwise component of vorticity emanating from the airfoil is referred as trailed
vorticity. If the circulation is constant along the wing span, vortices are trailed only from wing

5In aerodynamics the notion of downwash or upwash is relative to the lift and not the vertical. A downwash
velocity is a velocity in opposite direction of the lift.
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extremities, whereas if the circulation varies along the blade span, trailing vortices are created from
each radial position r forming a continuous vortex sheet. The strength per unit of length of the
trailed vorticity is directly equal to the bound circulation’s gradient which writes:

Γt(r) = −∂Γ(r)
∂r

dr [m2/s] (1.8)

For a real flow, the bound circulation gradient along the span will obviously be present because
the circulation has to vanish continuously at the wing extremities. As a result of this, the strength
of the vortex sheets usually increases towards the wing extremities where the circulation gradient
is expected to be the highest. These higher intensities of trailed vorticity at the tip will induce
a roll-up of the wake into concentrated tip-vortex. Prandtl neglected this roll-up to develop his
lifting-line theory where the blade was modelled as a superposition of horseshoe vortices laying on
the wing and expending towards infinity.

The last form of vorticity found is the one generated by time variations of the bound circulation
which shed spanwise vorticity in the wake. This shed circulation is directly related to the change
of vorticity on the blade as:

Γs(r) = ∂Γ(r)
∂t

dt [m2/s] (1.9)

The vorticity sheets are convected downstream with the wake velocity. According to Biot-Savart
law, the distributed vorticity from the wake and the blade induces a velocity field in the domain.
In particular this field acts on the fluid particle of the wake sheet which then tends to roll-up
into concentrated tip-vortex as it propagates downstream. It should be noted that in potential
flow, there can be no flow through these surfaces and they can be considered impermeable. An
illustration inspired and adapted from [93] of the different type of circulations involved is found
on Fig. 1.6. The above discussion is valid for rotary wings, but the structure of the wake is more
complex and will deserve more attention in the following.

Rotor wake specificity For a rotating wing, the vorticity structures are mainly transported
downstream in the axial direction and because they are continuously shed from different azimuthal
location due to the rotation of the rotor the resulting wake shape “looks” helical. The influence of
the wake on itself will distort the wake shape so that the wake does not hold its nominal helical
shape. For instance, the edges of the vortex sheet roll up into concentrated tip vortices. For
simplicity this roll-up can be ignored, as for the propeller case for instance where the high axial
velocity in the streamwise direction transport the wake quickly downstream. For airplane propeller
and helicopters the induced velocities are often small compared to the speed of flight but this is
not the case for wind energy applications in which they are appreciable and moreover opposite to
the streamwise direction. As the wake propagates downstream, the distance between the different
vortex sheets tend to decrease while the wake radius expands. The stability of the wake is quite
complex and depends mainly on the loading of the rotor. The loading can be related to the thrust
coefficient, which in turns is related to the inductions factors and the tip speed ratio. Studies of
wake stability can be found in [78], but in all theoretical derivations presented in this study the
wake is assumed stable.

Lightly-loaded assumption When a rotor is lightly-loaded it is argued that the wake expansion
behind the rotor is small and so is its distortion. When the assumption of lightly-loaded rotor is
made, it thus implies no wake expansion and distortion, so that the wake shape is a perfect helix
held in a cylinder with periodicity between the vortex sheet. For applications where the thrust
coefficient is low(usually high wind speed, low tip-speed ratio), the lightly-loaded assumption is
often used for its convenient simplicity.
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Vortex sheet

Trailed vorticity
Γt = dΓB

dr

Shed vorticity
Γs = dΓB
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Figure 1.6: Vortex sheet forming behind a wind turbine blade. The variation of bound circulation along the
span generates trailed vorticity, while its time variation generates shed vorticity. The influence of the vortex
sheet on itself induces a roll-up of the sheet at the root and the tip which concentrates into a tip and root
vortex.

Constant circulation The case of an hypothetical rotor uniformly loaded with hence a constant
circulation along its blades is sometimes referred as the Joukowski’s model. In this case a single
vortex is continuously emitted from the tip and from the root. This can be understood by looking at
the ill-definition of Eq. (1.8) at the blade extremities. In this simplified model, the discontinuity of
circulation at the tip will induce an infinite downwash at the tip. An illustration of the hypothetical
vortex system that would exist in this case can be seen on Fig. 1.7 where the hub radius is assumed to
be zero. For a simple aircraft made of two symmetric wings joined together, the bound circulations
of the wings are equal and have the same sign. There is thus no discontinuity of circulation
and hence no vorticity is trailed at the junction between the two wings. For a two-bladed wind
turbine(with or without hub) the bound circulation on each blade has opposite sign so that vorticity
is trailed at the root. In case where the hub radius is zero, the root vortices are trailed along the
rotor axis in a straight line with intensity:

Γaxis = −B Γblade = −B Γtip (1.10)

The tip-vorticity line convects downstream with the wake velocity forming an helix of constant
pitch and radius. If the hub radius is none zero, then B vortex lines of intensity Γblade are emitted
at the root and convects downstream in a helical shape.

For a wind turbine configuration, the axial component of the tip and root vorticity is such that it
induces a swirl in the wake in the opposite direction as the rotor rotation but no flow rotation outside
of the wake. The azimuthal component of the tip and root6 vortex induces an axial velocity inside
the wake in the upstream direction hence slowing down the flow inside the wake. More generally,
the axially induced velocity is in the opposite direction of the thrust, so that for a propeller, the
directions in the above needs to be inverted.

6In presence of a hub radius.
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Figure 1.7: Single helical vortex-line trailing from the tip under the assumption of constant circulation at
the blade and zero hub radius.

Despite the uniform loading the axial induction factor is not uniform due to the finite number of
blade. Instead it takes larger values in the vicinity of the blades and hence lower values elsewhere.
This can be demonstrated by implementing a simple vortex code using discrete line elements. The
influence of the bound’s circulation on each blade cancels out, and, if the hub radius is zero, the
circulation on the axis does not contribute to the axial induced velocity. As a results of this, only
the influence of the helical tip vortices of each blade needs to be computed. Results from such
simulation are displayed on Fig. 1.8. Despite the azimuthal variation it should be noted that the
azimuthally averaged value of a is uniform:

∀r, a = 1
2π

∫ 2π

0
a(r, ψ)dψ = cst (1.11)
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Figure 1.8: Azimuthal variation of a for different radial positions. It can be observed that the azimuthally
average value of a is uniform. These results were obtained using vortex line elements describing a three
bladed rotor operating at λ = 6, a = 1/3 and CT = 0.89, with a uniform circulation along the span equal to
Γ = CTπRU0/(Bλ). Each of the three helical curve extends 40 radii downstream and is modelled by 10000
vortex line elements.

Span-varying circulation When the circulation is not uniform each blade sheds a continuous
sheet of vorticity from its trailing edge that is transported downstream so that the resulting wake
shape can be compared to one of a screw. Thetypical notations and conventions are represented on
Fig. 1.9, while the non-expanding wake shape are detailed onFig. 1.10. In analogy with Eq. (1.10),
the center of the wake contains vorticity which is such that the flow outside the streamtube does
not have a tangential velocity. Its strength is equal to the axial components of the trailing vorticity.
As was mentioned above, the wake does not keep its canonical helical shape, it expands, distorts,
and rolls-up into concentrated tip-vortices. As most theories uses a non-expanding helical shape
as a starting point, Fig. 1.10 has been drawn to help visualize this wake shape. It should be noted
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that the wind turbine convention of rotor that rotates in the clockwise direction has been used for
clarity. To the author’s knowledge, the other references(e.g. [79, 80]), always represents these wake
shapes in the counter clockwise direction(which is common in propellers and helicopters references),
which could confuse the reader. This explains why the author has chosen to detail Fig. 1.10. On
Fig. 1.11, the wake from the three blades is represented.

Ωr
h

Figure 1.9: Continuous vortex sheet trailed by a rotor with span varying circulation - Convention

Velocities induced by the wake at the rotor The wake vorticity and the blade’s bound
vorticity7 induce velocities that alter the velocity field at any location and in particular about the
rotor. The induced velocities has an influence in 1/r3 according to Biot-Savart law. As a result of
this the contribution from the vortex close to the rotor will be predominant. A CFD study[120]
shows that resolving only the near wake, 0.5D, was giving induction results only 1.2% different than
the one for a simulation resolving a wake of 7D. Nevertheless, this grid size study result can not
be directly transfered to vortex codes where larger grid sizes are expected to be required[96]. The
exact induced velocity at the rotor is the result of the contribution of the entire wake, and is thus
a result of the whole circulation history. The numerical vortex methods that will be introduced in
Sect. 1.1.6 are used to calculate the induced velocity at the rotor from a given circulation history
at the rotor.

1.1.4 Methods to overcome the limitations of the momentum theory

In Sect. 1.1.2 the limitations of the momentum theory have been introduced and basic elements
related to three dimensional effects have been described. A better insight of the three dimensional
structure of the flow has been acquired through Sect. 1.1.3. Methods to account for these effects
and provide a better view of the details of the flow should now be presented.

Different philosophy Methods that investigate the flow can be distinguished between “near
wake” analysis where the flow is sought at the rotor and “far wake” analysis where the flow is
studied far downstream. The term “near wake” is used for the region where the properties of the
rotor can be discriminated, which is taken between half or one rotor diameter downstream. In the
far-wake, the effects due to the specificity of the rotor are assumed to be dissipated. Near-wake
analysis are the one commonly used obviously because in most application the interest is on the
details of the flow and loads close to the rotor and on the specificity of the rotor itself. Nevertheless,
far-wake analysis are used for theoretical derivations whose results are in turn applied for methods
that investigates the flow in the near-wake. Far-wake results will be the object of the next section
(Sect. 1.1.5)

7For a perfectly symmetric rotor the bound vorticity influences of each blade cancels out
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Figure 1.10: Visualization of the ideal helical wake with the proper wind turbine convention. The wake of
only one blade is displayed for clarity. All the plots follow the convention of a wind turbine turning in the
clockwise direction. These plots are different view of a same helical wake when the camera is rotated in the
wake plane by the angle presented below each figures. The axis of rotation is follows the blade pointing up.

   

Figure 1.11: Ideal helical wake behind a turbine generated by the three blades.

Vortex theory The knowledge of the wake vorticity distribution allows the calculation of the
induced velocity at the rotor. Analytical solution are limited to vortex lines, tubes and recently
helix[79] so that such methods are inherently oriented towards numerical implementation. Such
numerical methods will be described in Sect. 1.1.6.

E. Branlard 18



CHAPTER 1. TIP-LOSSES: CONTEXT AND CHALLENGES

Blade element theory The blade element theory derived by W. Froude[30] and mainly S.
Drzeweicki[27] takes into account the blade geometry and aerodynamic properties at every blade
location to determine the loads acting on an elementary blade portion assuming two-dimensionality
of the flow. Nevertheless, this theory by itself does not allow the determination of the flow at the
rotor. Combined with the momentum theory, it yields to the Blade Element Momentum Method,
which will be briefly commented in Sect. 1.3.4 and detailed in Appendix C.

Rotor plane
Ut

UnU
φ

θ

α

φ L

D pt

pn pn = L cosφ + D sinφ

pt = L sinφ−D cosφ
Chord axis

Figure 1.12: Blade velocity triangle and resulting aerodynamic forces for the blade element theory

The use of the Kutta-Joukowski theorem By application of the Kutta-Joukowski theorem
the forces along the blades can be determined and by integration one can obtain the total aero-
dynamic forces and moments acting on the turbine. Such method requires the knowledge of both
the circulation and the induced velocity distribution. If the circulation is known, simulations using
vortex method can be used to determine the induced velocity distribution. Experimentally, pres-
sure sensors on the blade can be used to determine the lift and then the circulation at different
locations. Different flow visualization techniques from smoke to Particle Image Velocimetry(PIV)
can be used to determine the induced velocities or the geometry of the wake.

Prandtl lifting line theory - Spanwise loading distribution Prandtl found the optimal
circulation distribution for a fixed wing by modelling the wake by a series of horseshoe vortices
placed along the wing span(mentioned in Sect. 1.1.3). His theory is based on two assumptions: the
wing is thin and has a wide span. From these hypotheses, the wake vortex-sheet is assumed to be
planar and the wing reduces to a bound vortex segment called Prandtl’s lifting-line. The whole
vortex sheet is composed by an infinite number of horseshoe vortices. The two trailing semi-infinite
segments from a horseshoe vortex located at the spanwise position y have the intensity dΓ/dy. On
one hand the lift coefficient can be computed by definition using the Lift(i.e. the circulation from
the Kutta-Joukowski relation), the chord and the relative velocity(approximated to the infinite
velocity). On the other hand the lift coefficient can be computed using thin airfoil theory. For
the latter, the effective angle of attack is used, which is determined by computing the induced
velocities from the vortex sheet. Equating the two formulae of the lift coefficient leads to Prandlt’s
integral equation. From the expression of the lift and the downwash, the induced drag as defined in
Sect. 1.1.2 is obtained. One approach used by Prandtl consists in defining a lift distribution L(y)
as an infinite Fourier series. This leads to a none trivial equation involving the Fourier coefficients.
Taking only the first term of the Fourier series leads to an elliptical distribution of lift. More details
on this can be found in e.g. [46, 57]. In his analysis, Prandtl showed that the elliptical distribution
was the one inducing the least drag. This result was also derived by Munk[76] using a far-wake
analysis.
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1.1.5 Far wake analysis: optimal distribution and the birth of tip-losses

Introduction Far wake theories applies under the assumptions of inviscid and irrotational flow,
and they rely on the fact that there is a direct relation between the loading and hence the circulation
at the lifting devise and the momentum in the wake. Such theories are often quite complex and
require a high level of abstraction so that only few historical elements and basic concepts are
referenced in this section. They are introduced in this study because all theoretical derivations
concerning tip-losses are based in the far-wake.

The motivations for such analysis is that the flow is way more complicated in the near wake due
to the interaction with blades, boundary layers at the blade and separation effects. These effects
dissipates and are thus no more present in the far wake. For helicopter flows the blade tip reaches
transonic speeds so that compressibility effects should be accounted for. For wind turbines such
speeds are not found but the Mach number can be found to be quite larger than 0.38 which is the
upper limit usually taken to justify incompressibility. In the far wake the induced velocities are
reduced so the assumptions of inviscid and irrotational flow can be further justified.

Far wake analysis - elliptical wing elliptical distribution By applying momentum theory on a
box surrounding the wing and extending the boundaries to infinity, only the plane perpendicular to
the direction of flight in the far wake is left in the calculation of the drag[57, chap. 9]. This concep-
tual plane or “front view”, called the Trefftz plane, leaves the chord as a secondary consideration
by focusing on the wake at the Trefftz plane only. The lift and drag at the lifting devise can be
determined by integration of the velocity potential in the Trefftz plane, and by application of the
Gauss theorem, reduces to a line integral on the wake. By using a variation method on the velocity
potential, Munk[76] derived the minimum drag and found the result of elliptic lift distribution in
a different way than Prandtl.

Betz Following an analogous far wake analysis as Munk[76], Betz derived the optimum circulation
distribution which minimizes the power losses for a propeller rotor with infinite number of blades[9].
To do so he calculated the thrust and power in the far wake and minimized the power for variations
of the circulation. This yielded to the condition of the flow being locally perpendicular to the
wake surface. The optimal circulation is obtained for this flow condition at any radial position by
integrating the velocity around a path surrounding the propeller axis. For this optimal condition
the flow in the far wake is the same as if the vortex surface formed by the trailing vortices was an
impermeable rigid body that translated downstream with a constant velocity w. In the propeller
case, this velocity is oriented in the stream direction going away from the rotor, whereas for wind
turbines, w is pointing towards the rotor. This analysis was performed under the assumption
of lightly-loaded rotor(low-thrust) and the system of vortex sheets was thus taken as a perfect
screw(no wake expansion). Betz referred to it as the “rigid-wake” condition but it should be noted
that the flow in itself does not follow a rigid rotation nor a rigid translation. The flow has to move
locally perpendicular to the screw surface which has an helix angle which changes with radius as
illustrated in Fig. 1.13, so that the flow actually has an axial and an azimuthal component. It is
important to note as well that the w is the apparent velocity of translation of the wake, but an
elementary wake surface at radius r would move at a velocity w cos ε(r), as illustrated on Fig. 1.13.

8Temperature plays a role as well with higher Mach number at lower temperature. See e.g. [14] for study of wind
turbines in cold climates.
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Figure 1.13: Helix angle change with radius. (a) Side-view of an helix of pitch h for two different radii - (b)
Close up on the change of helix angle ε along r and decomposition of the helix velocity along the normal of
the helix surface. Each wake section has a velocity equal to w cos ε(r). The apparent translation velocity of
the wake w has been represented for the case of a propeller, its sign should be opposite for a wind turbine.

Prandtl As a discussion following the work of Betz, Prandtl derived an approximation to correct
for the finite number of blades [88]. By doing so, he introduced a correction factor which made
the optimal circulation from Betz go to zero at the tip of the blade. This physical effect is referred
as tip-losses and the correction factor called the tip-loss factor usually noted F . A more detailed
study of Prandtl tip-loss factor will follow in Sect. 2.3.

Goldstein Advised by him, Goldstein[36] completed the work from Betz using the same as-
sumptions except with a finite number of blades and derived an exact solution as opposed to the
approximation from Prandtl. He used Betz’s results stating that the optimal circulation distribu-
tion for a given thrust was producing the same far-wake flow: a rigid screw moving axially with
a constant velocity. Goldstein took advantage of the periodicity of the flow between two screw
surfaces to solve Poisson’s equation which reduces to solving both the homogeneous and the inho-
mogeneous modified Bessel differential equations. Goldstein’s makes use of infinite series to solve
these equations with the proper boundary conditions. Once the potential is known he determines
the circulation at a given radial position, for a given tip-speed ratio by the jump of potential across
the sheet at this radial position(in the far wake). The velocity at any point of the far wake is
obtained by differentiation of the potential (V = gradφ). With the no-wake expansion assump-
tion, the velocities at the rotor are found as twice as much as the velocity in the far-wake and the
flow-angle can be derived. The calculation of the thrust and torque follow with and without the
presence of profile drag using the Kutta-Joukowski theorem. A guide to follow Goldstein’s article
can be found in Appendix A and overview of the results and challenges from his theory will follow
in Sect. 2.4.1.

1.1.6 Numerical vortex methods

Vortex methods determine the induced velocities at the rotor generated by the bound and wake
vorticity of the wake by using the Biot-Savart law. As opposed to the momentum theory, the vortex
theory is based on local flow characteristics and can thus provide more information about the flow.
It is important to note that the vortex theory gives the same results as the momentum theory
when using the same assumptions, that is, assuming an infinite number of blade, with the vorticity
distributed throughout the wake volume[49, 84]. Different vortex methods are found depending
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on the way the vorticity is modeled. The different options originate from the fact that Poisson’s
equation, which is linear, admits several infinitesimal solutions which can be used by superposition
to find any solutions satisfying the given boundary conditions of the problem. The equivalence
between a potential flow and a distribution of vortex elements is illustrated on Fig. 1.14, adapted
from [112].

σ ω

U = U∞ + 1
4π

∫
σr + ω × r

r3 dv

U(x, y, z)

ω = ∇×U
σ = ∇·U

Figure 1.14: Illustration of the equivalence between a given flow and a continuous distribution of sources
and vortices.

Different vortex code implementations exist also depending on the purpose of the code. Some codes
guess and prescribe the wake geometry to calculate the flow at the rotor for a steady situation, while
other codes reproduce the vorticity shedding, propagation and deformation of the wake. Several
variations of vortex codes have been implemented for this study as described in Appendix B. A
small overview is presented in this section.

Different dimensions of vorticity The size of the problem can be reduced in several degrees
to simplify it by integrating the distributed vorticity distribution and concentrating it into surfaces
lines, or even points. The different formulations changes the character of the flow in the vicinity of
the vortex elements which reduces to so called singularities. Far from the vortex elements though
the different configurations should give similar flow fields. The reduction of vorticity dimensions is
illustrated on Fig. 1.15, adapted from both [25] and [112].

ω = ∇×U γ =
∫
ωdz Γ =

∫
γdx

Vorticity volume Vortex sheet Vortex line

z

x

u u u

Figure 1.15: Reduction of vorticity dimensions by integration. The concentration of vorticity introduces
singularities in the velocity field close to the vortex elements.

Different vortex codes From the different dimensions of vorticity presented above, different
vortex code formulations can be derived. These vortex codes are illustrated on Fig. 1.16 and they
will be further described in the following paragraphs.

σγ

γ

Lifting line

Vortex latticePanel method

Lifting surface

Γ

Γ

Figure 1.16: Different vortex codes using different dimension of vorticity.
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Lifting-line code Prandtl’s analytical lifting line theory for a wing has been presented above in
Sect. 1.1.4. This theory cam be applied numerically for any lifting devises satisfying the assumption
that the extension of the geometry in the span-wise direction is predominant compared to the ones
in chord and thickness direction. For a wind turbine, under this assumption, each blade can be
modelled with a line, made of bound vortex segments, passing through the quarter chord point
of each cross section. All the flow field in chord-wise direction is concentrated in that point and
at each cross section of the blade the lift is assumed to act at the quarter chord location. From
each extremity of the bound vorticity segments, two trailing vortex segments emanates of the blade
and convects downstream. Segments parallel to the bound segments are also shed if the circulation
varies with time. The resulting wake shapes resembles a lattice justifying the appellation sometimes
used of “vortex-lattice code”. The implementation of such code varies. It can be made by using
segments, horseshoe vortex, or vortex rings. All formulation are identical but varies in the concept
of attribution of circulation value to the segments. For instance, in a vortex ring formulation,
each rings as one circulation value. Two adjacent rings in the spanwise direction will have one
trailed segment in common. The concept of the algorithm is such that the segment is counted
positive for one ring and negative for the other ring, so that by computing the total contribution
for the two rings, by linearity it is equivalent to computing the trailed segments only once with
the circulation value equal to the difference of the two circulations. For code optimization, this is
obviously required to avoid computing the influence of a same segments twice.

In this study a lifting line code has been implemented as described in Appendix B. Another example
of lifting-line code is the one from ECN called AWSM[37, 112]. In AWSM the effect of viscosity is
taken by using polars of the lift, drag and pitching moment as function of the local flow direction.
To avoid singularities for velocities evaluated close to the vortex line elements, a “cut-off radius” is
used in the denominator of the Biot-Savart law to ensure it is never 0.

Lifting surface code with vortex-lattice The difference between such code and a lifting-line
code is that the wing or blade is modelled with several elements in the chordwise direction and
hence takes into account the chord dimension. The wake model is identical, and the same concepts
of vortex rings, horseshoe vortex, or trailed and shed segments can be chosen. The difficulty in this
code come when it is used in combination with airfoil data. The notion of angle of attack needs
to be defined together with the chordwise repartition of lift and hence circulation. Methods using
known chordwise distribution from flat plates and elliptical wings are used in[82].

Lifting surface code with continuous distribution As opposed to the previous method, the
vorticity distribution is modelled continuously in each “rings” or quadrilateral forming the lattice.
This method is at midway between the vortex-lattice and the panel code formulation.

Panel code In a panel code the thickness of the geometry can be modelled offering the possibility
to compute complex flow cases. Many variations of panels code can be found, as referenced for
instance in[52].

Mixed representation For steady simulations in the light of optimizing propellers, steady
lifting-line codes are developed[18, 19]. Such methods requires iterations to find a physical so-
lution.

Challenges Due to the law in 1/r2 the induced velocity close to a vortex element tend to infinity.
Such phenomenon is observed within the hypothesis of potential flow, but in a viscous flow, even
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a strong vortex will generate finite induced velocity due to viscous shear forces within the fluid
elements[4]. The vorticity is diffused into a small tube called the vortex-core. Vortex methods
circumvent the infinite velocity by introducing these vortex core to simulate viscous effects[52, 49].
Nevertheless, the choice of the core size is empirical and affects significantly the results. In numerical
vortex methods where the vortex elements are allowed to move freely, numerical instabilities can
arise if two elements become too close to each other, even if a vortex core model is used.

Wake model The wake shape formed by the vortex elements has a critical influence on the
induced velocities found at the rotor. It has been seen that for real flow the wake convects, expands,
rolls up and distorts. To capture these phenomena, the induced velocities at every point of the wake
should be calculated and used to determine how each vortex element will move and what will be
their location at the next time step. Such model is referred to as a free wake model. Running such a
model requires an important computational time and raises different problems such as the handling
of vortex elements as they get close to each other(viscous model, re-meshing) and the modelling
of the stretching of vortex elements. These problems are often circumvented by using a prescribed
wake model which specifies the wake shape and hence the locations of each vortex elements. The
determination of the wake shape is usually empirical or based on free-wake simulations. For a
given prescribed wake the induced velocities at the rotor are known in a deterministic way, so
that the accuracy of the solution is entirely dependent on how realistic the wake shape is. Given
the large number of parameters influencing the wake shape(CT , λ,Γ, etc.) prescribed wake models
clearly appears limited. Nevertheless, a common approach consists in using mixed representation
setting the close-wake free in order to capture local phenomena, while modelling the far-wake as a
prescribed helix of constant pitch and radius. Wake modelling for vortex methods has an important
number of variations which are beyond the scope of this document(see for instance [33]).
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1.2 Considerations on the local aerodynamics of a rotating blade

The understanding of the 3D aerodynamics of a rotating blade is fundamentally required in this
study. The 3D effects influencing the airfoil performance are investigated because they need to be
the modelled in BEM codes and sometimes vortex codes as well. The challenge in these codes is
to use tabulated 2D airfoil data which by essence does not reveal three dimensional effects. Two
main levers are found:

- The angle of attack: a wrong assessment of the angle of attack will lead to a wrong data from
the table.

- The airfoil performances: the relevance of 2D airfoil data for wind turbine is rather limited[114],
the airfoil performances have to be known for the exact flow conditions(stall, radial flow, extension
of the boundary layer, etc.) they are evaluated at.

The problem is really critical for simulation quality but also really challenging. The notion of
tip-loss is greatly implicated in this problem as it is used to determine the flow angle and thus the
angle of attack either in direct or inverse BEM codes. Inversed BEM codes can be used to find the
local angle of attack for a given load distribution on the blade. For this reason a wrong tip-loss
implementation will not value a good 3D correction model, and an inaccurate 3D correction model
will give no hope to find a good tip-loss correction. An uncertainty analysis was carried out[74] by
students from Georgia Tech that showed that the uncertainty on the airfoil coefficients was the one
which had the greatest influence on the determination of Goldstein’s tip-loss factor(see Sect. 2.4.1).
On the other hand, rotational effects and stall are mainly found in the inner part of the blade, so
it is likely that the tip-losses won’t have effects in this area. It has also been observed[32], that as
long as the airfoil section is not stalled, the 2D data were a good approximation in wind energy
applications.

In Sect. D.2 a comparative study between the airfoil coefficients found with 3D CFD compared to
the one found with 2D CFD is presented. These data will be used in Sect. 5.2 to assess a “lift
coefficient” tip-loss factor. It will be indeed seen that tip-losses can (partially) by viewed as airfoil
corrections (as defined e.g. by Eq. (1.28)). The following paragraphs will be useful to discuss this
definition.

1.2.1 Angle of attack

Definition of angle of attack The notion of angle of attack is only well defined in a 2D situation
whereas in 3D the introduction of span-wise velocity and induced velocities make it ill-defined. In
two dimensions, the angle of attack is defined as the angle between the velocity vector and the
chord direction vector. In the 2D lifting line theory, the angle of attack has been found to be
defined as the angle between the local chord direction and the local effective velocity which is taken
as the sum of the undisturbed velocity and the velocity induced by the wake. This definition is
made more general, by considering the projection of the total velocity into the plane of the airfoil
section. This distinction is important when radial flows are present and in the case of swept and
coned blades.

In [101] the induced velocities used for the angle of attack are taken as the one resulting from all
vorticity except the one from the bound vortices. In a same fashion, Pitot tube measurements on
a rotating blade must be corrected to account for the bound circulation and for the finite number
of blade. In the BEM method(see Appendix C), such considerations are not needed because the
induced velocities will not be calculated using the Biot-Savart law, but using a force-momentum
equilibrium law.
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Inverse methods to determine the angle of attack Using the BEM formalism presented in
Appendix C, the angle of attack can be determined if the load distribution is known. The load
distribution can be determined by integration of pressure measurement or CFD computation. It
is likely that when integrating pressure from measurement, a coordinate system attached to the
airfoil chord will be used and hence the load in the chordwise and perpendicular direction will be
known. Using data from CFD, depending on the post processor, the data might be exported in
another reference system, such as the global blade coordinate system. The pitch angle and twist
angle being known, the axial and tangential forces per length, pn and pt, are here used as input
variables for this inverted BEM code.

The second linkage equations Eq. (C.13) and (C.14) have to be solved for a and a′.

Bpn
4πρrU2

0
= aF (1− a) (1.12)

Bpt
4πρrU2

0λr
= a′F (1− a) (1.13)

It should be noted that the tip-loss factor has been inserted in these equations using Glauert’s
formalism. Also, the “hat” notation â, has been dropped not to surprise the reader with this
notation. Other implementations of the tip-loss and BEM equations are possible as described in
Sect. 3.2. Only the principle of inverse BEM codes is described here. The flow angle is then
determined with the first linkage equation:

φ = atan (1− a)u0
(1 + a′)λr

(1.14)

Once again, strictly speaking, the local axial inductions on the blade aB and a′B should be used in
these equations, but several variations of BEM formulation exist. The angle of attack, and lift and
drag forces per length immediately follow:

α = φ− θ (1.15)

and the aerodynamic coefficients:

Cl = 1
1
2ρU

2c
(pn cosφ+ pt sinφ) (1.16)

Cd = 1
1
2ρU

2c
(pn sinφ− pt cosφ) (1.17)

If the tip-loss functions are not function of a and a′, then the resolution is done, otherwise an
iterative procedure is required. For this the tip-loss function can be initialized to 1. For instance,
all functions can be taken as the Glauert tip-loss correction, FGl. As it will be seen in Sect. 3.1, this
factor depend on φ(r), which in turn depend on a and a′, justifying the iterative procedure. Both
in experimental and computational methods, the force normal to the chord axis is the one obtained
with the most accuracy so it is expected that the lift force will be determined more accurately than
the drag force. Moreover, a small error in the determination of the angle of attack will results in
a large error in the induced drag due to commonly large values of the lift over drag ratio εl/d (see
Eq. (1.6)).

In a similar fashion, it is possible to use a vortex code in an inverse fashion, using iterations to find
the angle of attack corresponding to a given loading. More details on such methods can be found
in [94] and [32].
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Other methods to determined the angle of attack The averaging technique is probably the
most widely used method to determine the angle of attack for CFD data. This method presented
in [43, 48] consists in averaging the axial induction in annuli located at different distance to the
rotor to extrapolate the value of the axial induction at the rotor. In its simplest form, only two
annuli symmetric with respect to the rotor can be used. In [97] an iterative method is presented
which can be used for both CFD and Pitot tubes measurements. This method uses the loading on
the blade and the flow angle parameter to determine the bound circulation and the corresponding
induced velocities, that will in turn modify the flow angle. A similar method, but using this time a
distributed circulation instead of a point vortex to assess the induced velocities is presented in[47].
The advantage of this method, is that it is less dependent on the distance to the leading edge where
the velocity is evaluated.

1.2.2 Rotational effects

Rotational effects In the middle of the 20th century, Himmeslkamp[45] has observed on aircraft
propellers that the lift coefficients of the airfoils were increased due to rotational effects implying
radial flows. This observation was mainly seen in the smaller radial sections where it was also
observed that the stall was occurring at higher angle of attack. One of the first simulation that could
include rotational effects and carried out for a wind turbine was done by Sørensen in 1986[102]. The
effects of lift increase and stall delay were found in these simulations and confirmed by observations
of Savino and Nyland[95, 1985], and later by Rasmussen et al.[90, 1988], Madsen and Rasmussen[68,
1988], Ronsten[91, 1991], Bruining[16, 1993], with other references found in[63] and a throughout
comparison in[62].

- Lift coefficient: In the inner part of the blade, increase of lift coefficient up to 30% can be found.
Nevertheless, the quantification of increase of lift is difficult and clearly airfoil dependent. As a
general trend, the difference between the 2D and 3D lift coefficients increases going from the mid-
span to the hub, in the region where stall occurs. It was also found that the 3D aerodynamic
coefficients mainly starts to differ from the 2D coefficient from the angle of attack of maximum lift.

- Radial component: It was found that the laminar flow was hardly influenced by rotational effects
and followed the chord direction from the leading edge. Nevertheless, when the flow encounters an
adverse pressure gradient and separates, the fluid is significantly moved outwards by the centrifugal
force. This effect is referred as “centrifugal pumping”.

- Drag coefficient: Studies of the NREl phase VI experiment[62, 107] showed an increase of drag
near the root and a small decrease near the tip. In his study, Sørensen found almost no difference
but slightly lower Cd. In general, there is no full consensus yet concerning the drag coefficient,
though it has been observed that the pressure in the 3D separated zone is lower than the one in
2D, resulting in higher drag. The tapered ratio of the tip is likely to have an influence on the drag
coefficient towards the tip.

- Separation Point: Stall can be delayed of few percent of the chord length.

The current understanding of rotational effects can be described as follow. The centrifugal loads
acts on all volume of air for which the relative tangential velocity differs from the relative velocity
of the blade, Ωr. This radial flow can only occurs in regions of strongly retarded flows as the
separated boundary layer and separation bubble present on the suction side of the blade. Due to
centrifugal loads the air is accelerated radially towards the tip of the blade. This radial velocity
component will induce a Coriolis acceleration in the main flow direction, acting as a favourable
pressure gradient. The displacement thickness of the separated boundary layer is decreased, leading
to less de-cambering and higher lift coefficients[101]. .
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1.2.3 Airfoil corrections

Data for large angles of attack Data for large angles of attack are usually not available from
wind tunnel measurement so extrapolation techniques are often used. For high incidences(e.g.
α ∈ [−170 ; −30] ∪ [30 ; 170]) airfoil characteristics are considered to become rather independent
of the geometry so that data from a flat plate can be used. This is for instance mentioned in [98] but
with the flat plate airfoil characteristics reduced by a factor of 85%. In [5] the fully separated(fs)
coefficients for high angle of attack are computed as:

CL,fs = 2 cosα sinα (1.18)
CD,fs = 1.3 sin2 α (1.19)

Cm,fs = −1
4Cn with Cn = 1.0 sinα (1.20)

and a function g is used to ensure a smooth transition between the original data and the extrapolated
data, as C• = gC•+ (1− g)C•,fs, with e.g. the function g defined with three parameters αd, α0 and
∆α as:

g(α) = 0.5 + 0.5 tanh
[
αd + α0 − |α|

∆α

]
(1.21)

Another model is the one from Viterna and Corrigan[115] which extrapolates the airfoil coefficients
after stall. The authors looked at a way to obtain an idealized stall that would keep a constant
torque at high wind speeds and thus high angles of attack. This approach was developed to fit
measured and predicted performances of two specific stall regulated wind turbine. This correction
requires that the lift over drag ratio at the initial angle of attack matches the lift over drag ratio of
a flat plate. This is unfortunately not a common case and in[107] it is argued that an incomplete
understanding of the stall process existed at the time of this method’s development. In[107],
the Viterna’s method is applied with as input the angle of attack and the average aerodynamic
coefficients values over the blade span for which the lift over drag ratio matches the flat plate
theory. A review of aerodynamics coefficients at high angles of attack can be found in [61].

Airfoil data 3D corrections The 2D airfoil coefficients found from measurements in wind tunnel
or by simulations such as CFD or panel methods tools such as Xfoil[26], are usually corrected to
be used in BEM or aeroelastic codes. It should be noted that though there are uncertainties
in simulations results, measurements data also have quite a spread as seen in the comparison of
results from 4 different renown wind tunnels [69]. Most 3D correction methods can be written in
the following form:

C•,3D = C•,2D + fC•∆C• (1.22)

where • stands for L, D, m, the indexes of Lift, Drag and moment coefficients. ∆C• is the difference
between the coefficient C• estimated in inviscid flow(i.e. without separation) and its its steady 2D
value evaluated for instance from a wind tunnel measurement(where obviously separation will
occur). The inviscid lift coefficient can be approximated with the one for the Joukowski’s airfoil
family[46] approximated for a thin airfoil of trailing edge parameter a, chord of ≈ 4a, at small angle
of attack α and small camber parameter β :

Cl,inv,thin ≈ 8πa
c

sin(α+ β) ≈ 2π(α− α0) (1.23)

Nevertheless, the author would like to point out that such approximations is often inappropriate
for airfoils used in wind energy. This remark will also apply when commenting the performance
tip-loss correction from Lindenburg in Sect. 3.1. The result from Eq. (1.23) apply to thin airfoils
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and the slope 2π is only obtained when the thickness tend to zero. In Abbot and Von Doenhoff[1],
a similar conformal transformation is used for symmetric airfoils that leads to(see [1, p 53]):

Cl,inv,thin ≈ 2π
(

1 + 4
3
√

3
t

c

)
sin(α− α0) ≈ 2π

(
1 + 0.77 t

c

)
sin(α− α0) (1.24)

where the thickness ratio has been taken as (3
√

3/4)ε/a ≈ 1.299ε/a according to Abbot and Von
Doenhoff’s notations. This formula shows that the slope for thick airfoil can be expected to be higher
than the theoretical results of 2π extensively used in engineering methods. The author does not
recommend in particular to use Eq. (1.24) which could lead to tremendously large slopes for thick
airfoils. Instead, a linear fit of 2D viscous tabulated data in the linear region (e.g. [α0 ; α0 + 8])
should be used to determine the slope Cl,α. The inviscid coefficient could then be determined as:

Cl,inv = Cl,α sin(α− α0 − 0.01) (1.25)

The constant 0.01 is suggested in order to ensure that the inviscid data are slightly always than
the viscous one.

A brief overview of the models of Snel et al[101], Lindenburg[62, 63], Du and Selig[28] and Chaviaropou-
los and Hansen[20] which all increases the lift coefficient in the root section can be seen Tab. 1.1.
None of the methods presented in this table uses a correction for the moment coefficient, i.e.
fCm = 0. This table also presents the engineering model that has been derived by Sant[93] for
the NREL phase VI rotor[40] using different polynomials P of degree 3 and 4 in c/r. The model
of Bak et al[7] is probably the most complex one at this moment as it uses a model for the Cp
distribution depending on the angles of attack where the separation occurs from the leading edge
and where the separation starts from the trailing edge. This model of Cp tries to reproduce the
difference between Cp distributions from 3D measurements and 2D data. It is also the only model
that presents a correction for the moment coefficient. Among the other existing corrections used
for wind turbine, one can mention the methods to extrapolates coefficients for unclean blades(ice,
dirt, insects). Such extrapolation methods are referenced in [14].

Table 1.1: Corrections of airfoil coefficients for 3D effects according to Eq. (1.22)

Model fCL fCD

Snel et al.[101] 3
( c
r

)2
or 3.1

( c
r

)2
0

Lindenburg[63] 3.1
(

Ωr
Vrel

c

r

)2
0

Du & Selig[28] 1
2π

[
1.6(c/r)
0.1267

a− (c/r) dRΛr
b+ (c/r) dRΛr

− 1
]

with Λ = ΩR/
√
V 2

0 + (Ωr)2

a = b = d = 1

− 1
2π

[
1.6(c/r)
0.1267

a− (c/r) dR2Λr

b+ (c/r) dR2Λr
− 1
]

Chaviaropoulos
& Hansen[20]

a
( c
r

)h
cosn β

with a = 2.2, h = 1 and n = 4
a
( c
r

)h
cosn β

Sant [93] KL(α)
[
1− e−0.003(max(α,αs)−αs)3

]
with K• = g•(n• −m•α)e−a•(α−αs)

g, n,m, a = P ( cr )

KD(α)
[
1− e−0.003(max(α,αs)−αs)3

]

E. Branlard 29



CHAPTER 1. TIP-LOSSES: CONTEXT AND CHALLENGES

Stall Delay The most common stall delay model is the one from Corrigan and Shillings[21, 62].
Most models for stall delay modify only the lift coefficient, but not exclusively. For wind turbines
applications, a modification of the drag coefficient is most probably required due to difference of
pressure intensity observed in the separated regions between 2D and 3D stall.

Tip-losses The tip-loss correction of Shen et al.[98] suggests of correction on Cn and Ct to account
for the pressure equalization at the tip of the blade which should lead to the loads vanishing. This
correction will be presented in more details in Sect. 3.1.3 and 3.2.2. In his PhD thesis[93], Sant
suggests a correction for the lift and drag coefficient in a similar fashion than Shen. This correction
is presented in Sect. 3.1.3.
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1.3 Preliminary considerations for the study and modelling of tip-
losses

1.3.1 Physical considerations expected to be modelled

- The force on the blade should go to zero at the tip due to the pressure balance between the upper
surface and the lower surface

- The relative velocity at the blade tip cannot be equal to the upstream velocity due to shear at the
boundary of the “ideal” streamtube and to the presence of the tip vortex that will clearly modify
the flow structure at this particular location.

- The average axial induction drops towards zero at the tip, but does not have to be exactly zero at
the tip. The radial and rotational flow at the tip due to the tip-vortex transfers axial kinetic energy
towards rotational kinetic energy so that the flow is not likely to have it’s full upstream velocity at
the tip. This is supported by the considerations of the previous point, and CFD simulations.

- The relative velocity is not uniform in a annular section to the limited number of blades. The
axial and tangential induction factor are thus azimuthally dependent.

- The flow has a radial component, simply due to the expansion of the streamtube and also more
subtly due to 3D aerodynamic effects[67]. As a result of this the 2D airfoil coefficients could not
be suitable to give the exact aerodynamic loads.

- The circulation along the blade is not constant due to e.g. root and hub losses. This will imply
a radial dependency of the induction factors.

- The optimal circulation distribution derived by Goldstein and reasonably simplified by Prandtl
are never obtained in reality. Moreover they are derived for optimal frictionless rotors, so their
applicability to rotors in general is uncertain.

1.3.2 Definition of the tip loss factor

It will be seen that several definitions and interpretations of the tip-loss factor can be found in
the literature. These definitions will be introduced in this section, but more detailed will be found
throughout this document, particularly in chapter 2 where the theoretical work are presented. As
a result of these different definitions, the implementation of the tip-loss factor will also have several
variations. This will be the focus of Sect. 3.2.

Definition in terms of axial induction The fact that the axial induction factor is azimuthally
dependent suggests the introduction of the average induction factor in an annulus a (see Eq. (1.3)).
It is also expected that this factor will reach an extremum in the vicinity of the blade so that the
particular value taken at the blade is relevant and will be denoted aB. With these definition, the
tip-loss factor F has been defined by Glauert as the ratio between the azimuthally averaged axial
induction factor and its value at the blade:

F = a

aB
(1.26)

The difference between a and aB can be read on Fig. 1.8. Reading the plot at the azimuthal
positions of the blades(e.g. 120◦), and doing the ratio of the inductions factors at different radial
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position, the tip-loss factor as defined by Eq. (1.26) can be visualized. A shape similar to Fig. 2.12
is obtained.

Definition in terms of circulation The tip-loss factor can also be seen as the ratio between
the maximum theoretical circulation for a rotor with an infinite number of blades to the actual
circulation for a rotor with finite number of blades:

F = BΓ
Γ∞

(1.27)

This definition corresponds to the work of Prandtl and Goldstein, whose work will presented

Definition in terms of aerodynamic efficiency In Sect. 1.2 the local aerodynamics near
the blade has been discussed. At the blade tip the flow is likely to differ significantly from 2D
aerodynamics due to the formation of the tip-vortex(see e.g. ??). The performance of the airfoil
at the tip is hence lower than expected and a tip-loss factor can be defined accordingly as:

FCl = Cl,3D
Cl,2D

(1.28)

This tip-loss factor is likely to be dependent on the tip geometry and on the rotor operating
condition. It will be investigated using CFD data in Sect. 5.2. This tip-loss factor can be seen
independently of the one from Eq. (1.26) which predicts a reduction of angle of attack near the tip.

1.3.3 Distribution of axial induction

Given the definition from Eq. (1.26), a throughout understanding of how the axial induction is
distributed around the wind turbine is required. Several figures will be and have been presented
to illustrate the variations of the axial induction. Observing these figures, several general remarks
are drawn:
- Figure 1.1: From the 1D momentum theory, it is known that the axial induction increases pro-
gressively from upstream to a given value downstream
- Figure 1.8: Using a vortex code with a constant circulation along the blade, it was seen that the
axial induction increases azimuthally when approaching the blade azimuth and drops after that.
This increase of induction is more important at the tip of the blade.
- Figure 4.7: The bound circulation is responsible for the jump in axial induction from both side of
the blade when looking at different azimuthal position. The wake is responsible for the main part
of the axial induction. In a sense, the blockage of the flow is performed by the wake.
- Figure 6.3: The axial induction increases when going further downstream. The local effects are
smoothen out and the presence of the nacelle becomes barely noticeable. It is seen that the average
axial induction goes to zero with the radial coordinate, but is not zero at the tip.
- Figure 1.17: The thrust coefficient has an important influence on how the axial induction is
distributed before and after the rotor. The higher the thrust coefficient, the more flow is blocked
in front of the rotor. Radial variations of the axial induction in the wake are of course dependent
on the axial induction on the blade. Important variations of axial induction are found at the tip.
Velocities higher than the free stream velocity can be found at the tip, implying that negative axial
induction can occur at the tip. As said above, The velocity does no reaches the free stream velocity
exactly at the blade tip.
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(a) U0 = 6 m/s - CT = 0.25 (b) U0 = 10 m/s - CT = 0.21 (c) U0 = 12 m/s - CT = 0.1

(d) U0 = 14 m/s - CT = 0.06 (e) U0 = 16 m/s - CT = 0.03

Figure 1.17: Side view of the turbine showing the variation of velocity(or axial induction) found with CFD

1.3.4 Subtleties of the BEM method relevant for this study

For clarity, the common BEM method is presented in annex Appendix C whereas this section is
more dedicated to the subtleties of this method. The blade element momentum(BEM) method is
attributed to Glauert[35] and results in the combination of the momentum theory and the blade
element theory. The momentum theory applied to an annular element provides the corresponding
elementary thrust and torque for a given set of induction factors. This relation between induction
factors and loads is invertible. The velocity triangle from the momentum theory also gives an
expression of the flow angle as function of a and a′. On the other hand, the blade element theory
requires the airfoil characteristics, the angle of attack(or the flow angle) and the relative velocity to
calculate the forces of lift and drag applied to the blade element, and by projection the elementary
thrust and torque. For a given rotor geometry and a given wind condition, a physical solution
will be found if both methods returns the same loads for all the different stripes. In order to find
this solution, the methods are linked together to form a converging iterative process. The author
likes to emphasize two links, or linkage, to clearly distinguish the difference of the methods and
how they interact. The first linkage is obtained by comparing the velocity triangles of the two
methods(energy equation). The second linkage consists in equalizing the loads obtained from both
methods. Figure 1.18 illustrates the BEM process, the use of the different theory and the two links
between them.

Context of applicability
Assumptions 1.1: Simplified 2D Momentum theory
(H 1.1a) - Homogeneous, incompressible, steady state fluid flow
(H 1.1b) - No frictional drag
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Blade Element Momentum theory

1st link

Momentum theory

a, a′ dT, dQ

Blade Element theory
φ, Vrel
Airfoil

dT, dQ

Airfoil

φ, Vrel

aB, a
′
B

a0, a
′
0

Convergence loop

2nd link ∫ R

rhub

Figure 1.18: Parameters needed and results obtained with the different method used. The Blade Element
Momentum(BEM) method results in the combination of both the momentum theory and the blade element
theory

(H 1.1c) - Actuator disk generates a pressure drop and rotates the flow downstream(infinite number
of blades)
(H 1.1d) - Uniform circulation/thrust over the rotor area and thus uniform induction
(H 1.1e) - Lighlty loaded rotor
(H 1.1f) - The static pressure far upstream and downstream is equal to the undisturbed ambient
static pressure(ω small compared to Ω)
Assumptions 1.2: Blade element theory
(H 1.2a) - No aerodynamic interaction between the annular elements
(H 1.2b) - Forces on the blade can be calculated using airfoil aerodynamic characteristics
Assumptions 1.3: BEM
(H 1.3a) - The assumptions of momentum theory can be relaxed
(H 1.3b) - The forces of the B blade elements are responsible for the change of momentum of the
air which passes through the annulus swept by the elements

A justification on how (H1.1d) can be relaxed can be found in [70, p 63]. This relaxation is
primordial to justify the common use of the BEM method.

Pros and cons Doing a listing of advantages and shortcomings of a BEM code is bound to raise
clichés and debates, so the reader is invited to evaluate them parsimoniously:
Advantages

- Fast
- Known and well tested models to unsteady flows
- Proved some accuracy

Shortcomings:
- Not possible to model winglets of sweep-back blades
- 3D effects, yaw, non-stationary effects and stall are only modelled
- No investigation of the flow possible(boundary layer, pressure distribution, wake)
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Observed performance of BEM codes The performance of BEM codes will be extremely
dependent on the model implemented. As an illustrations of this, several observations found in the
literature are listed. It is see that these observations are sometimes contradictory and they should
thus not be taken as general. Different observations are found when comparing with measurements.

- Underprediction of power, especially after stall [92].
- Underprediction of power in the stalled conditions[102].
- Overprediciton of power for 2-bladed rotors[62]
- Prandtl tip loss correction overestimate the loads at the tip[98]
- Under prediction of the power coefficient in the inner part of the blade and over prediction in

the outer part of the blade (without tip or hub corrections ) [66, 67]

Debate on the drag In linking the blade element theory and the momentum theory, it is argued
that the drag should not be included.

- References advising not to include the drag:[117, 62, 23, 70]
- References including the drag:[42, 6]
- References arguing both:[70]

From an analysis of the following references [17, 62, 46, 117], the following can be mentioned
concerning the debate on the inclusion of the drag. The viscous effects emerging from the boundary
layer of the airfoil are propagated in the wake into helical filaments enclosed by vorticity. The
velocity deficit caused by drag is confined to this narrow wake emerging from the trailing edge. It
is argued that these filaments are diffused behind the rotor and are only a feature of the wake,
so that they induced no velocity in the rotor plane. The momentum equations uses the induced
velocities at the rotor plane and thus from the argument above the drag coefficient should not be
used.

This argumentation requires the understanding and distinction of pressure drag and friction drag.
Friction drag comes from the tangential component of the strain vector at the wall which arises
from viscosity. Pressure drag is the result of the normal component of the strain vector. For
profiled bodies at high Reynolds number, at a first approximation separation can be neglected and
the pressure solution would be close to the one found for the corresponding potential flow9. The
pressure drag force could then be neglected as a general result of potential flow. Nevertheless, the
frictional drag associated with the viscous strain in the boundary layer is non zero and makes the
most part of the total drag. In the contrary, when separation clearly occurs, the pressure drag is
likely to be the predominant term in the total drag. The friction drag is barely dependent on the
relative thickness of the profile whereas the pressure drag clearly is. Assuming attached flow at
high Reynolds number then, the pressure drag could be considered as zero and thus the drag would
not contribute to the pressure drop across the rotor. This analysis though is to be taken with care
and its results can be argued.

Steady BEM Code patches BEM Code patches listed here with a minimum of detail. The
representation as a list of different items should be taken with care as most of them are overlapping
or interlinked.

- Momentum theory break down: The actuator disk stops all the fluid if a = 1/2, but this cannot
be stored it has to flow away so correction is needed. The common corrections are the one from
Spera or Glauert. Typically CT = f(a) inverted in a = f(CT )

- Hub and tip losses due to 3D effects and the intrinsic generation of vorticity from the lift
- Corrections of airfoil coefficients accounting for 3D effects, extrapolation, smoothing of airfoil

data
9For moderate Reynolds number though, the pressure drag due to the presence of the boundary layer, even if thin,

can be quite important.
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- Stall delay model accounting for some 3D effects

Each of these “patches” offers a different levers to correct for the difference between the simplified
theory and the real situation. There are indeed different physical phenomenon observed such as
centrifugal pumping, stall delay, tip losses, and it seems reasonable to treat these different problem
independently, but obviously non-linearity in the overall problem will make the modelling and
verification difficult. The different models mentioned above have proven good when combined all
together in the BEM algorithm, but there is no guarantee that improving one model with more
physical sense will make the overall BEM code more accurate.

1.3.5 Final remarks

Note on potential flows The 1D and 2D momentum theory relies on the assumption of potential
flow, which mainly implies that the drag is zero. The blade element theory on the other hand does
not have this constraint. Using both the simplified 2D momentum theory and the BET, the BEM
equations should in theory be constraint to the absence of drag but nevertheless BEM codes are
used with drag. The same apply to vortex theory which relies on potential flow, and vortex codes
which are sometimes used as predictive wind turbine tools, using drag. All wind turbine codes
all have to relax the assumptions on which they are based, hence loosing rigour and introducing
potential inconsistency.

Pragmatic approach All of the above being kept in mind the physical problem of tip-losses
will be investigated. Such investigation will require the observation of this phenomenon through
experiments and simulation, together with an interpretation and understanding of its physics. By
studying the different existing models, understanding their limitations and confronting them to
different datasets, an insight of the challenges raised when modeling this problem will be acquired.
Due to the different “BEM patches” acting as as many levers, a global view of the field of influence
of each of them is necessary. Such analysis should eventually give suitable basis for trying to search
for improvements.
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Chapter 2
Theories of optimal circulation and tip-losses

2.1 Introduction

As seen in the historical review(Sect. 1.1), the notion of tip-losses appeared in the research of
the optimal circulation distribution that would give the minimum losses for a given thrust. The
theories from Prandtl and Munk[76] for the elliptical distribution applied on a finite-span wing are
not described here. Nevertheless, the theories that apply for propellers and wind turbine directly
follow their early analysis. The main articles presenting the optimal circulation for rotors are
further studied below, including the one from Betz[9] with its comment from Prandtl[87], written
in german, they are reported by Prandtl in english in [88]. Advised by Betz, Goldstein[36] extended
the theory and the work of all the mentioned authors is reported by Glauert[35] in 1935.

All theories are based on a prescribed wake shape made of helix surfaces. For this reason, the
literal, mathematical and physical formalism of the helical wake surface will be presented first
before approaching the different theories. This introduction will also allow to tackle the different
theories in a slightly more general way than presented originally by the authors. The following
analysis is performed in light of the modern wind energy references such as [117, 17, 42], and
modern research articles as [79, 80], and tries to reduce the confusion a reader can encounter when
following the old and modern references with their different (sometimes implicit) assumptions.

2.1.1 Preliminary remarks and notations

Notes on old references Going through the old references on this subject requires a lot of care:
- The references uses different notations from one to another, which is of course not a big issue,

but some of them are extremely confusing. As an advise, care should be taken when reading
variables: r, r′, x, λ, µ, h, l.

- The convention used in the old references is the convention for propellers, so that the axial
induced velocity has actually an opposite sign to the one given in this document. Also, the lon-
gitudinal relative wake of a propeller is in the downwind direction whereas it is in the upstream
direction for a wind turbine.

- Most references apply under the assumption of lightly loaded rotor, and omit the induce
velocities in the velocity triangle. Some references mentioned as an appendix that their formulae
should be modified to include the induced velocities. Two modifications are often mentioned an
exact one, and an approximation. The exact one account for both induced velocity, whereas the
approximation accounts only for the axial induced velocity.
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Index notation To distinguish the theories between each authors, the first two letters of their
last name are used as indices:

Be→ Betz
Pr→ Prandtl

etc.

Definitions When referring to the wake screw surface special care is required on the defini-
tions and notations. Different notations and conventions are sometimes found between different
publications[79, 80, 31], so that a clarification of notations and definition is presented on Tab. 2.1.
Most definitions from Tab. 2.1 are summarized on Fig. 2.1 and 2.4.

Table 2.1: Notations and definitions for the wake screw surface. The lasts columns contain the notations
used by Prandtl, Theodorsen and Okulov.

Definition Expression Units Pr Th Ok
Pitch: longitudinal distance between two
turns of the same surface

h 2πr tan ε = cst [m] h H h

Pitch angle: angle formed by the screw sur-
face

ε atan dz
rdθ = f(r) [rad] ε φ

Apparent pitch: longitudinal distance be-
tween two consecutive sheets generated by two
consecutive blades

hB
h
B [m] h

Normal distance: perpendicular distance
apart of the edges of two consecutive blades’
screw surface

s h
B cos εR [m] a

Torsional parameter: introduced in the
mathematical formalism describing the helix

l h
2π [m] r′

Normalized pitch h h
R = 2πl

R [.]
Normalized torsional parameter or ad-
vance ratio

l l
R = h

2πR = tan εR [.] λ l

wake relative longitudinal velocity w f(uiz,w , uiθ,w , ε) [m/s] w′ w w

Axial induced velocity at the rotor uiz f(w, φ) [m/s] wa uz0
Tangential induced velocity at the rotor uiθ f(w, φ) [m/s] wt uθ0
Axial induced velocity in the wake uiz,w f(w, ε) [m/s] wa uz

Tangential induced velocity in the wake uiθ,w f(w, ε) [m/s] wt uθ

Mathematical formalism of the helix In Cartesian and polar coordinates the equation of an
helical sheet as function of a dimensionless parameter t is:

x(t) = r cos t
y(t) = r sin t
z(t) = lt

↔


r(t) = r

θ(t) = t

z(t) = lt

(2.1)

Using the polar coordinates, one finds that θ = z/l so that by definition the tangent of the pitch
angle for an helix is:

tan ε = dz

rdθ
= l

r
= h

2πr (2.2)
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φ ε ww/2

hrotor, lrotor h, l

λ

R
Ω

Rw
Ωw

U0 U0 − w/2 U0 − w

U0

U0

Figure 2.1: Side view of the helical wake behind a wind turbine. An important distinction is made between
parameters from the near-wake and the far-wake

Introducing kinematics The wake vortex sheet rotates at an angular velocity Ωw and moves
downwind with the velocity U0−w, which means θ(t) = Ωwt and z(t) = (U0−w)t. By identification
with Eq. (2.1), one finds t = Ωwt, and l = U0−w

Ωw , so that the tangent of the pitch angle is:

tan ε = U0 − w
Ωwr

↔ h = 2πU0 − w
Ωw

↔ l = U0 − w
Ωw

(2.3)

If one considers the sheet generated by the blade number b, then a phase offset should be added to
the azimuthal coordinate as:

θ(t) = Ωwt+ 2π(b− 1)
B

(2.4)

The velocity triangles resulting from the kinematics study of the near and far wake helices is found
on Fig. 2.2.

φ
ε

Ωr

U0 − w/2
U0 − w

Ωwr

Figure 2.2: Velocity triangle resulting from the mathematical and kinematic study of helix. (left) Near wake
- (right) Far wake

Boundary conditions on the screw surface On the screw surface, the motion imparted to
the air is normal to the surface. This a known result for screws. The screw surface is moving at a
velocity w along its axis. The velocity of the screw surface is entirely determined by the induced
velocities on the surface itself.

Goldstein[36] considers the rotating frame in the far wake (U0,Ωwr) and writes the equality of
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uiz,w

uiθ,w

uiz,wcos ε

uiθ,w sin ε

w cos ε

ε

(a)

w

w cos ε

uiz,w = w cos2 ε

uiθ,w = w cos ε sin ε

ε

(b)

Figure 2.3: Induced velocity in the far wake. (a) Projections of velocities on the normal - (b) Induced
velocities as function of the wake velocity w

normal velocities on the wake sheet as seen on Fig. 2.3a to get the relation:

w cos ε = uiz,w cos ε+ uiθ,w sin ε (2.5)

which simplifies to
w = uiz,w + uiθ,w tan ε (2.6)

In the above equation, the velocity of the screw surface has been determined as function of the
induced velocities. Looking at Fig. 2.3b, the induced velocities can be expressed as function of the
screw velocity as well:

uiz,w = w cos2 ε (2.7)
uiθ,w = w cos ε sin ε (2.8)

Inserting the boundary condition from Eq. (2.6) into the kinematic relation given by Eq. (2.3),
leads to :

tan ε =
U0 − uiz,w

Ωwr + uiθ,w
(2.9)

Nevertheless it will be seen that this relation is not used historically.

ε
φ

w
w/2

w/2 cosφ

w cos ε

uiz,w = w cos2 εuiz = w/2 cos2 φ

uiθ = w/2 cosφ sinφ uiθ,w = w cos ε sin ε

Figure 2.4: Near wake and far wake notations.
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w

W uiz

uiθ

W

U0

U

φ

a′Ωr = uiθΩr

φ

aU0 = uiz

(1− a)U0

Vr

Figure 2.5: Velocity triangle at the rotor related to the near wake notations of Fig. 2.4

2.1.2 Relation with rotor parameters

One of the problem of the far wake analysis is that it uses values of parameters in the far wake. For
this analysis to be usable in practise the far wake parameters should be linked to the parameters
at the rotor. This is done in different ways in the literature.

Relation on induced velocities In absence of wake expansion, the induced velocities at the
rotor are taken to be half the one in the far wake:

uiθ = 1
2uiθ,w , uiz = 1

2uiz,w (2.10)

Using the above equations and the definition of the flow angle yield to:

tanφ = Un
Ut

= U0 − uiz
Ωr + uiθ

=
U0 − uiz,w/2
Ωr + uiθ,w/2

(2.11)

It is reasonable to postulate that the flow angle at the rotor corresponds to the pitch of the screw
surface at the rotor. Nevertheless, this angle will in general be different from the angular pitch in
the far wake.

First relation used historically For simplicity, Prandtl, Betz and Goldstein define the wake
screw surface such that its pitch angle is the ratio of the “velocity of flight” U0 to the rotational
velocity of the blade Ωr.

tan ε = U0
Ωr ↔ h = 2πR

λ
(2.12)

Nevertheless, the three authors argued that the screw’s pitch angle should be modified according
to the induced velocity at the rotor in the following way:

tan ε =
U0 − uiz,w/2
Ωr − uiθ,w/2

(2.13)

Prandtl also mention that the following approximation can be useful:

tan ε = U0 − w/2
Ωr (2.14)

In 1944, Theodorsen[108] expands Goldstein’s theory to the case of highly loaded rotors by defining
the tangent of the tip vortex angle in the ultimate wake as:

tan εR = U0 − w
ΩR (2.15)

which is consistent with the kinematic relation Eq. (2.3) with Ωw = Ω.
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Relation in the general case In order to include all the possible situations discussed in the
literature, generic variables will be used for the normal and tangential velocity which are used to
assess the angle of pitch of the screw. The screw’s pitch angle ε is written to be generically equal
to:

tan ε = Vn
Vt

(2.16)

This should avoid repetition of formulae and unify the different studies and assumptions. The
screw’s pitch angle is allowed to be different from the flow angle φ at the rotor defined by Eq. (2.11):

This is introduced because of the difference of definitions presented in the previous paragraph
concerning old references, and also because some authors (Lock[64], and Burton et al. [17] ) argue
that the vortex theory assumes no rotation of the inflow. This means that Ut and Vt should be
allowed to be different. From the work of Theodorsen[108], the axial components Un and Vn will
be likely to be different as well.

Common modern relation Assuming the relative velocity of the wake behind the rotor is half
the relative velocity in the far wake, with analogy with what has been done when studying the
kinematics of the far wake, the near-wake pitch angle is set to;

tanφ = U0 − w/2
Ωr (2.17)

The correponding pitch is then:

hrotor = 2πU0 − w/2
Ω (2.18)

The rotor tip speed ratio is easily introduced in this relation to give:

λ = 2π R

hrotor

(
1− w

2

)
(2.19)

with w = w/U0. The conservation of circulation across all cross section of the wake implies[80] that
the pitch at the rotor is the same than the pitch at the far wake: hrotor = h. The far wake pitch is
hence introduced in Eq. (2.19):

λ = 2πR
h

(
1− w

2

)
= 1
l

(
1− w

2

)
(2.20)

Equation (2.20) provides the missing relation required to link the rotor parameters λ,R to the far
wake parameters h,w. It should be noted that Eq. (2.17) and the assumption hrotor = h will lead to
inconsistencies such as w = 0 if h is assessed with the relations from Eq. (2.12) and (2.15) used at
the beginning of the 20th century by Prandtl and Theodorsen. Equation (2.20) assumes in general
Ωw 6= Ω.

2.1.3 Final remarks

Dimensionless circulation The circulation distribution will be made dimensionless: using the
pitch of the helix h and the backward velocity of the wake w:

CΓ = Γ
hw

(2.21)

Using h = 2πr tan ε yields to :
CΓ = BΓVt

2πrwVn
(2.22)
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In the particular case where Vt = Ωr and Vn = U0 + w, which is used by [108, 79] it writes:

CΓ = BΩΓ
2πw(U0 + w) (2.23)

In the particular case where Vt = Ωr and Vn = U0, which is used by [36, 35] it writes:

CΓ = BΩΓ
2πwU0

(2.24)

Tip-loss factor The total circulation found by Betz, Γ∞, is used as a reference case as it corre-
sponds to an infinite number of blades. Obvisouly this is not a circulation per blade. If one uses the
result of Betz and distributes it artificially over the B blades of the rotor, then each blade would
have a reference circulation Γ∞/B. For a given blade circulation distribution Γ, the tip loss factor
is expressed with respect to the reference distribution1:

F = Γ
Γ∞/B

(2.25)

Dependency in r In the following, most parameters are dependent on the radial position r
but this dependence is not formally written. Nevertheless, when parameters are evaluated at a
particular position, like r = R, then this dependence is explicitly written.

2.2 Betz theory of optimal circulation

2.2.1 Betz’s optimal circulation

In the following the results of Betz optimal circulation are presented. In a second time, elements
of the demonstration are given but the reader is invited to refer to the original articles of Betz[9]
and Munk[76] for a throughout understanding of the derivation of optimum lifting devises.
Assumptions 2.1:
(H 2.1a) - Inviscid, irrotational fluid
(H 2.1b) - Lighlty-loaded rotor
(H 2.1c) - Infinite number of blades
(H 2.1d) - Uniform flow

Betz[9] obtained the fact that for the optimum rotor, the flow far behind the rotor is the same as if
the wake surface formed by the trailing vortices was rigid and moved downstream with a constant
velocity. This assumption is hence added to the list above:
(H 2.1e) - Optimal rotor (“rigid wake”)
Assumption (H2.1c) deserves a little attention regarding the definition of the circulation. If ΓB(r)
designs the circulation around one blade at radius r, then the circulation for an infinite number of
blade is

Γ∞(r) = lim
B→∞
ΓB→0

B · ΓB(r) (2.26)

1This can of course be thought inversely as the comparison of the total circulation BΓ with respect to the total
circulation Γ∞ of Betz’s rotor
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and the above limit is assumed to be finite. Historically, Betz uses the helix angle from Eq. (2.12),
that will be replaced here for general purposes by Eq. (2.16). The boundary conditions on the
“rigid wake” Eq. (2.8) and Eq. (2.7) then writes:

uiz,w = w
V 2
t

V 2
n + V 2

t

(2.27)

uiθ,w = w
VnVt

V 2
n + V 2

t

(2.28)

Integrating the tangential velocity along a circle of radius r gives Betz optimum circulation:

Γ∞(r) =
∫ 2π

0
uiθ,wrdθ = 2πruiθ,w = 2πwVnΩ

V 2
t

V 2
n + V 2

t

(2.29)

Assuming this results apply for a rotor with B blades then the circulation of each blade is:

ΓBe = Γ∞
B

= 2π
B

wVn
Ω

V 2
t

V 2
n + V 2

t

(2.30)

which writes in dimensionless form:

CΓBe =
(
Vt
Ωr

)
V 2
t

V 2
n + V 2

t

(2.31)

In the special and historical case of Vt = Ωr and Vn = U0,i.e. using the helix angle from Eq. (2.12),
the Betz circulation reduces to:

ΓBe,0 = 2π
B

wU0
Ω

λ2
r

1 + λ2
r

(2.32)

and in dimensionless form:
CΓBe,0 = λ2

r

1 + λ2
r

(2.33)

2.2.2 Overview of Betz’s demonstration

Betz demonstration relies on quite advanced statements and theorems which make the reproduction
of the demonstration quite difficult. The major elements of the demonstration are here mentioned
for reference.

- The “staggered theorem”: This theorem derived by Munk states that the total drag of any lifting
system is always independent of longitudinal coordinate of the lifting elements. These elements can
be displaced in the direction of flight if the lift force stays the same(the angle of attack might change
but not the effective angle of attack)[76]. An equivalent theorem was derived by Betz, though its
formulation is more complex due to the fact that the vortex system considered has the shape of a
screw. The result is that lifting elements can be displaced along the screw lines without changing
the total energy-loss.

- The principle of determination of minimum induced drag found by Munk is somehow extended
by Betz in terms of work loss(for wind energy, this translates to maximum power extraction). The
basics of these two formulations consists in the consideration of two lifting elements. The optimal
distribution of circulation is obtained if the displacements of these two elements(by means of the
staggered theorem) while keeping the total thrust (or total lift in case of a wing) unchanged does
not reduces the energy loss. By reductio ad absurdum, if this was not the case then the energy loss
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could be reduced using the new distribution of circulation. In the case of the wing, a condition of
constant downwash along the span is found. In the case of a propeller, this conditions writes:

wn
r sin ε = cst (2.34)

- The last part of the demonstration consider the velocity component normal to a rigid screw surface
moving at a constant streamwise velocity w. By using the formalism of helix and the definition of
the pitch , a relation is found that takes the same form than Eq. (2.34). from this results, a suitable
choice of the longitudinal velocity of the screw w can be made so that Eq. (2.34) is satisfied. In
that case, wn = w cos ε and Betz condition writes:

w cos ε
r sin ε = cst i.e. r tan ε = cst (2.35)

This leads to Betz results of the “rigid wake” analogy, which translated by Prandtl reads: “The
flow behind a propeller having the least loss in energy is as if the screw surfaces passed over by the
propeller blades were solidified into a solid figure and these were displaced backward in the non
viscous fluid with a given small velocity”.

2.2.3 Inclusion of drag

In Glauert’s report[35], another derivation of Eq. (2.32) is found attributed to the work of Helmbold[44].
This derivation leads to the following form of solution:

Γ = 2π
B

U2
0

Ω A
λ2
r

1 + λ2
r

(2.36)

Which is equivalent to Eq. (2.32) if A is taken as w/U0. Glauert then follows a similar demon-
stration, in which he includes the effect of profile drag, assuming a constant lift over drag ratio εl/d
along the blade. In this case, the optimal circulation found is:

Γ = 2π
B

U2
0

Ω

(
A− λr

εl/d

)
λ2
r

1 + λ2
r

(2.37)

If A = w/U0, then the above can be written in dimensionless form(different than Glauert’s one
though):

CΓ =
(

1− λrw

εl/dU0

)
λ2
r

1 + λ2
r

(2.38)

The author then argues that due to the high values usually taken by εl/d, the ratio λr/εl/d is small
near the root of the blade and thus the formula of optimal circulation Eq. (2.36) applies in this
region. Going towards the tip though, the circulation reaches an optimal and falls to zero when
λr = Aεl/d. Once again, given the high values of εl/d, and the rather small tip-speed ratio values
of wind turbine operations, it is likely that λ < Aεl/d and thus the circulation is non zero at the
tip. The difference between the optimum circulation without drag (εl/d = ∞) and with drag is
illustrated on Fig. 2.6. As expected, for high lift-over-drag ratio, the circulation is close to the
optimal one without drag. The same is observed for higher inductions (i.e. A higher).

2.3 Generalized Prandtl’s theory

Assumptions 2.2:
(H 2.2a) - Inviscid, irrotational fluid
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Figure 2.6: Betz’s optimum circulation with and without drag with λ = 10.

(H 2.2b) - Lighlty-loaded rotor
(H 2.2c) - Finite number of blades
(H 2.2d) - Uniform flow
(H 2.2e) - The problem is approximated in 2D using a succession of semi-infinite aerofoils separated
by a distance s

2.3.1 Qualitative description

In the case of the rigid wake screw with a large number of blades, the surfaces of the screw are
close together and it can be assumed that under the lightly loaded assumption, the flow remain
contained in the cylindrical slipstream. On the other hand, with a smaller number of blades, the
flow will have a tendency to flow around the edges of the impermeable screw surface and a radial
component appears on top of the rotational component. Fluid particles will go around the edges of
the sheets weaving from one side of a sheet to the other. The lower the axial velocity of a particle,
the closer it will get to the rotational axis.

Prandtl replaces the vortex sheets by material disks that will make the flow go around these disks in
a similar fashion than described above. The material sheets introduced are moving with the velocity
of the wake to ensure this model reproduce in its best the developed wake flow. The velocity of
the wake being U0 − Ui,w, and the free stream velocity U0, then in the referential of the wake(i.e.
the material sheets), the free stream flow will have the velocity Ui,w. For simplicity, azimuthal
symmetry is assumed so that the problem reduces to two dimensions and the disks are replaced by
semi-infinite lines. This model is illustrated on Fig. 2.7. A simple2 conformal transformation exists
that transforms this layout into a simpler flow so that the problem can be solved analytically(see
Sect. 2.3.2).

The freestream particles weaves in and out between the sheets[17, p84] adding kinetic energy to the
wake flow. The axial velocity will thus increase from the wake velocity to the freestream velocity
when going towards the edge of the sheets. The more apart the sheets, the deeper the free-stream
air would penetrate and the more kinetic energy is added to the wake flow.

The distance separating the disks, s, is taken as the normal distance between two helical sheets
at the wake radius. This distance is thus a function of the number of blades and the pitch of the

2A conformal transformation always exists
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Ui,w

s

y

x

Figure 2.7: The system of material sheets introduced by Prandtl. This figure is drawn in the referential of
the material sheets in which the relative velocity of the free stream is Ui,w.

wake-screw, which in turn is related to the tip speed ratio of the turbine3. As a result of this,
for high tip speed ratio, the distance s is small compared to the rotor radius. From the above
paragraph, a small distance between the disks will imply that the distance from the rotational axis
where the wake velocity is unaffected by the free-stream is large. This is observed on Fig. 2.12a,
where the effect of tip-losses is concentrated at the tip for large tip-speed ratios.

2.3.2 Detailed derivation of Prandtl’s tip-loss factor

In the following the mathematical derivation of Prandtl tip-loss factor is done. The derivation
present no difficulty but is not found in detail in any references to the author’s knowledge. By
looking at Fig. 2.8, the distance s is easily found to be:

s = h

B
cos ε(R) (2.39)

h cos ε

ε

ε

h

s = h
B cos ε

Figure 2.8: Distance between two helical vortex sheets at the “tip”. Illustration for three blades

Determination of the conformal transformation The 2D plane of Fig. 2.7 will be further
referred as the z-plane, using the complex coordinates z = x+ iy. The system of material lines are
then described with x ∈ [−∞ ; 0] and y = ks, with k ∈ Z. The idea is to find a conformal mapping
that would transform the system of all material lines into another complex plane, the Z-plane, in
which the system and hence the flow are simplified. The first simple mapping that could come into

3In which proportion this relation occurs is more complex. In most articles from the beginning of the 20th century,
this relation is taken as λ = 1/l.
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mind is the logarithm one which transforms concentric circle in the Z planes into parallel lines in
the z planes. The problem is that the flow around an infinite number of concentric circles is not
known so this idea should be discarded. Clearly a way to simplify the problem and remove the
fact that an infinite number of lines are present should be found. By looking at the symmetry of
the problem, and by the knowledge of the periodicity of the complex exponential function, this
reduction can easily be done. Writing y = kπ sπ , then the semi-infinite lines are transformed by the
exponential to:

e
πz
s = e

πx
s eikπ = e

πx
s

{
1 k ∈ 2Z
−1 k ∈ 2Z + 1

(2.40)

Given the values of x ∈ [−∞ ; 0], e
πx
s covers the segment [0 ; 1], and e

πz
s covers the segment

[−1 ; 1]. By using the transformation
z = s

π
logZ (2.41)

the problem of reducing the complexity of the infinite number of lines has been solved. The problem
reduces to determining the flow around a segment. This is a well known problem in fluid dynamics
which is solved by using another conformal mapping: Joukowski’s conformal mapping.

The most famous conformal mapping in aeronautics is the one from Joukowski, defined as :

z = 1
2

(
Z + 1

Z

)
(2.42)

The idea is that the flow around a circle in the Z plane is analytically known by superposition of
three elementary potential solutions: the uniform flow, a vortex and a doublet, the two latter being
at the circle’s center. All the circles considered by Joukowski intersect the real axis at coordinate
1. The transformation is such that depending on the location of the circle’s center a different airfoil
profile is obtained in the z plane by inverse transformation. The typical example is the one of the
unitary circle, which is transformed by Eq. (2.42) into the segment [−1 ; 1]. This is easily seen by
inserting Z = eiθ into Eq. (2.42).

z = 1
2
(
eiθ + e−iθ

)
= cos θ (2.43)

From the two paragraphs above the pieces are easily put together to derive the conformal mapping
that transforms the infinite system of semi-infinite segments into the unit-circle around which the
flow is known. The transformation writes:

z = s

π
log

[1
2

(
Z + 1

Z

)]
(2.44)

It should be noted that the function z(Z) is an injection which covers only two semi infinite lines if
the complex logarithm is defined with an imaginary part in [π ; π[. A definition of the logarithm
as function of the argument of Z should be used to cover the infinite number of lines, viz.

log(reiθ) = log r + iθ with θ ∈ R and r ∈ R+ (2.45)

Determination of the complex velocity It was said above that the flow around a circle is
known from the superposition of the infinite flow, a vortex and a doublet. In the current problem,
only the induced velocities due to the circulation flow is sought so that only the vortex contribution
is considered. It is recalled that the complex potential F is defined in term of the potential function
Φ and the stream function Ψ as:

F(Z) = Φ + iΨ (2.46)
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For a single vortex located at the origin the complex potential is known to be of the form:

F(Z) = −i Γ
2π logZ (2.47)

where the circulation Γ is a constant to be determined. The variable Z can be eliminated between
Eq. (2.44) and (2.47), to yield:

Z = exp
[2π

Γ (Φ + iΨ)
]

(2.48)

Inserting Z back into Eq. (2.44) gives:

z = s

π
log cos

[2π
Γ (Φ + iΨ)

]
(2.49)

The potential can be solved by considering the streamline Ψ = 0 which corresponds to the surface
formed by the unit circle (or the equivalent vortex lines), and by equating the real parts:

Φ = ± Γ
2π acos exp xπ

s
(2.50)

The uncertainty on the sign comes from the inversion of the cosine(cf. cos(x) = cos(−x)). The
complex velocity wZ in the Z plane is defined as dF/dZ, which can be related to the complex
velocity wz in the z plane as:

wz = dF
dZ
· dZ
dz

(2.51)

The two parts of this product are:

dF
dZ

= − iΓ2π
1
Z

(2.52)

dz

dZ
= s

πZ

Z2 − 1
Z2 + 1 (2.53)

Eventually, the complex velocity in the z-plane is:

wz = −i Γ
2s
Z2 + 1
Z2 − 1 (2.54)

It should be remembered that the real velocity components are obtained by taking the conjugate
of the complex velocity, i.e. u = Rewz and v = − Imwz. In order to find a multiplicative factor
for the velocity, Prandtl defines the potential in such way that the free stream velocity is equal to
1. Making |Z| → ∞ in Eq. (2.54), this condition leads to the determination of the constant Γ as:

Γ = 2s (2.55)

Equation (2.54) is enough to draw the streamlines around the vortex lines by using different con-
centric circles in the Z−plane. Nevertheless, this equation is a little disappointing for it expresses
the velocity in the z plane as function of the Z coordinate instead of the z coordinate. It is possible
to obtain a closed form equation but only between two vortex lines due to the fact that z(Z) is an
injection as was discussed above. This problem is of course minor because given the periodicity of
the flow solving it between two lines is enough. Writing for simplicity e = exp (πz/a), and with
the minimum rigor required, Eq. (2.44) is written:

Z2 − 2Ze+ 1 = 0 (2.56)

which can be solved as:
Z = e± i

√
1− e (2.57)
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Using Eq. (2.56), Z2 + 1 and Z2 − 1 can easily be expressed and Eq. (2.54) writes:

wz = e

i (e− 1/Z) = ±e√
1− e2

=
± exp

(
πz
a

)√
1− exp

(
2πz
a

) (2.58)

The velocity field found from Eq. (2.54)a is displayed on Fig. 2.9 for a series of concentric circles
in the Z planes.

The work of Prandtl Using the scaling constant from Eq. (2.55), the velocity potential is:

Φ = ± s
π

acos exp xπ
s

(2.59)

The shape of the velocity potential is displayed in Eq. (2.54)b. Prandtl interprets the surface
formed by this figure, which is the integral of the difference of potential along the vortex lines, as
a factor which can be directly used for the determination of the lift(see examples of applications in
e.g. [88]). From this point, the derivation of the tip-loss factor can be done in different ways. The
induced velocities between two vortex lines can be integrated analytically. This was presented by
Glauert and will be described in the next paragraph. Another way of seeing it consists in looking
at the difference of potential on both side of a vortex line, which is related to the circulation. By
dividing this difference by the distance between two vortex lines s, a factor between 0 and 1 is
obtained, which corresponds to the tip-loss factor :

F = 2
π

acos exp πx
s

(2.60)

In his article[87] Prandtl uses this factor as a multiplicative factor for the optimal circulation found
by Betz, viz:

Γ = F · Γ∞
B

(2.61)

Prandtl also computes the distance of which the lines must be reduced in order to have the same
overall losses but a constant velocity between the vortex lines. In the English version of his report[88]
though, a typographic error is found, the correct expression of this distance being:

a′ = s

π
log 2 (2.62)

In the original papers log(2)/π is approximated by 0.2207, whereas a more accurate rounding would
be 0.2206. Different ways of determining this factor are possible, by looking at the velocity, the
potential, etc. A simple numerical way is to look at the area lost compared to unity:

a′ =
∫ 0

−∞
(1− F )dx (2.63)

For an analytical derivation it is easier to consider the velocity as done in[35].

The work of Glauert Instead of using the scaling to unity from Eq. (2.55), Glauert[35] uses the
relative velocity outside of the system of lines that he writes v′. Equation (2.58) is simply modified
by multiplying it by v′. From the discussion of Sect. 2.3.1, the relative velocity of the free stream
outside the system of lines is v′ = Ui,w. The notation v′ will be kept below for harmony with this
reference. Glauert uses Eq. (2.58) as a starting point to derive Prandtl’s tip-loss factor. It will
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Figure 2.9: Prandtl velocity field and potential. (a) Velocity field around the vortex lines obtained using
Eq. (2.54) for equidistant circles in the Z planes - (b) Surface formed by the velocity potential

be shown here how the two approaches are equivalent. The idea is here to compute the average
longitudinal velocity between two vortex lines on a segment of abscissa x, i.e. the segment A-D
seen in Fig. 2.10. This average velocity is computed as:

v = 1
s

∫ s

0
v dy = 1

s
I(AD) (2.64)

where the notation I(AD) has been introduced to represent the integral between points A and D.
To evaluate this integral, one can use the chain rule with the intermediate points B and C displayed
in Fig. 2.10.

s

y

x

A D

CB

A′
x

Figure 2.10: Definition of the points used to integrate the average velocity between two sheets.

Using our knowledge of the symmetry of the flow, and assuming that the velocity between B and
C is constant equal to v′, the evaluation of the integral is:

I(AD) = I(AB) + I(BC) + I(CD)
= I(AB) + I(BA′) + I(BC)
= 2I(AB) + I(BC)
= 2I(AB) + v′s

The integral I(AB) is easily derived using the change of variable cos θ = exp (πx/s):

I(AB) =
∫ 0

x

−v′ exp
(
πx′

a

)
√

1− exp
(

2πx′
a

)dx′ = v′s

π

∫ 0

acos exp(πx/s)
dθ = −v

′s

π
acos exp

(
πx

s

)
(2.65)
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So that the average velocity eventually writes

v = 1
s

(
v′s− 2I(AB)

)
= v′

[
1− 2

π
acos exp

(
πx

s

)]
(2.66)

from which the factor F is defined as:

F = 2
π

acos exp πx
s

(2.67)

Transferring Eq. (2.66) back to the referential of the ground velocity(i.e. adding U0 − v′) and
re-establishing our notation v′ = Ui,w, the average velocity between two vortex sheets of the wake
is:

Uw = U0 − FUi,w (2.68)

Using the 1D momentum theory results for the induced velocity in the far wake, Ui,w = 2aU0, the
above writes:

Uw = U0(1− 2aF ) (2.69)

which is assumed to be extended to the rotor as well, viz:

U = U0(1− aF ) (2.70)

Going back to the rotor geometry The system of vortex sheets in the z plane as an x
coordinate that extends from −∞ to 0. The analogy with the rotor is done by replacing x by R−r,
so that eventually the tip-loss factor is derived as:

F = 2
π

acos exp
[
−πR− r

s

]
(2.71)

Literal expression From the analysis above, the tip-loss factor is usually decomposed into two
expressions interpreted as follow by Larrabee[59]:

F = Average fluid velocity
Vortex line velocity = 2

π
acos exp(−f) (2.72)

f = π
Edge distance

Vortex line spacing = π
R− r
s

(2.73)

2.3.3 General expression

The demonstration done by Prandtl[87] is followed but this time in the idea of extending his work
to the most general case where the tangent of the helix angle is determined by the arbitrary ratio
of Vn and Vt. By doing so the following circulation is found:

ΓPr = 2π
B

wVn
Ω

V 2
t

V 2
n + V 2

t

2
π

acos exp
[
−πR− r

s

]
(2.74)

In this equation one recognizes the expression of Γ∞ so that the tip-loss factor stands out easily:

FPr = 2
π

acos exp
[
−πR− r

s

]
(2.75)

The distance between two screw surface at the tip defines s as :

s = h(R)
B

cos (ε(R)) (2.76)
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In the most general case the screw pitch h is not simply 2πU0/Ω as used by Prandtl, it actually
depends on the radius and writes:

h(r) = 2πr tan (ε(r)) = 2πrVn(r)
Vt(r)

(2.77)

This leads to the following general expressions for s:

s = 2πR
B

sin (ε(R)) = 2πR
B

Vn√
V 2
n + V 2

t

∣∣∣∣∣∣
r=R

(2.78)

and the tip-loss factor to be:

FPr = 2
π

acos exp
[
−B2

R− r
R sin (ε(R))

]
= 2
π

acos exp

−B2 R− r
R

√
1 + V 2

t (R)
V 2
n (R)


= 2
π

acos exp

−B2
(

1− λr
λ

)√
1 + V 2

t (R)
V 2
n (R)

 (2.79)

By using this general expression, it will be straightforward to unify all the different variation of the
“Prandtl” tip-loss functions found in the literature. A list of these expressions will be provided in
Sect. 2.3.4. Comparison between the optimal circulation of Betz and the one from Prandtl can be
seen in Fig. 2.11. The effect of wind speed, tip-speed ratio and number of blades on the tip-loss
factor can be seen in Fig. 2.12.
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Figure 2.11: Comparison between Betz and Prandtl’s circulation function.

2.3.4 Different uses of Prandtl’s generalized tip-loss factor

From the general expression of Eq. (2.79), several expressions of the tip loss factor can be derived.

- Assume Un = Vn and Ut = Ut, then4 φ = ε. This is the most common relation stated as a starting
4Modulo 2π . . .
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Figure 2.12: Prandtl’s tip loss factor. (a) Influence of wind speed - (b) Influence of number of blades, for a
constant λ = 8

point for Prandtl’s tip loss correction:

FPr,1 = 2
π

acos exp
[
−B2

(
1− λr

λ

) 1
sin (φ(R))

]
(2.80)

- Assume Un = Vn = U0, Ut = Vt = Ωr, then φ = ε. This results is the one originally found in
Prandtl’s article from 1919[87], and used by Goldstein[36] for comparison with his own theory:

FPr,0 = 2
π

acos exp
[
−B2

(
1− λr

λ

)√
1 + λ2

]
(2.81)

- Assume Un = Vn, Ut = Vt, and R sin (φ(R)) ≈ r sin (φ(r)). This is suggested by Glauert[35], and
according to Wilson and Lissaman[117] it is also suggested by Lock[64]. The form below is as well
found in the “Wind Energy Explained”[70]. It is the form used in most BEM code, supposedly
more conveniently because the flow at the tip can be unknown while evaluating values at station r.

FGl = 2
π

acos exp
[
−B2

(
λ

λr
− 1

) 1
sinφ

]
(2.82)

- Assume Un = Vn, Ut = Vt, R/
√
Un(R)2 + Ut(R)2 ≈ r/

√
U2
n(r) + U2

t (r), Ut = Ωr(i.e. a′ = 0),
Un = U0(1− a) . This is done by Burton et al.[17] in the “Wind Energy Handbook”.

FBu = 2
π

acos exp

−B2
(
λ

λr
− 1

)√
1 +

(
λr

1− a

)2
 (2.83)

- Assume Vn = U0(1 − a) and Vt = Ωr(1 + a′). This is the “exact” correction suggested by Betz
and Prandtl in their articles [9, 88].

FPr,2 = 2
π

acos exp

−B2
(

1− λr
λ

)√
1 + λ2

(1 + a′(R)
1− a(R)

)2
 (2.84)

- Assume Vn = U0(1 − a) and Vt = Ωr. This is the “approximate” correction suggested by Betz
and Prandtl in their articles [9, 88].

FPr,3 = 2
π

acos exp

−B2
(

1− λr
λ

)√
1 +

(
λ

1− a(R)

)2
 (2.85)
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- Assume Vn = U0(1 −
√
F a

2 ) and Vt = Ωr(1 + 2
√
F a′

2 ). This is an interesting suggestion from
Lindenburg[62] to account for more realistic wake dynamics that will deserve a justification of the
assumptions in Sect. 3.1.2.

FLi = 2
π

acos exp

−B2
(

1− λr
λ

)√√√√1 + λ2
r

(
1 + 2

√
FLi a′/2

1−
√
FLi a/2

)2
 (2.86)

The list is probably not an exhaustive list as some assumptions can be combined, it certainly
appears confusing but should unify the different forms of tip-loss corrections accounted for the
work of Prandtl and Glauert in the literature.

2.4 Goldstein’s optimal circulation

Despite its relevancy for this study it is not in the scope of this report to explicit the article of
Goldstein from 1929[36]. Instead, a short guide to read through this article is suggested because
this theory is often left apart for its complexity whereas it provides a more suitable representation
of the flow’s potential than Prandtl’s theory. The reader is thus invited to follow this short guide in
Appendix A which is followed by a detailed description on how to calculate the Goldstein’s factor
using Okulov’s method[79].

2.4.1 Goldstein’s theory and its derivatives

The assumptions of Goldstein’s work are as follow:
Assumptions 2.3:
(H 2.3a) - Inviscid, irrotational fluid
(H 2.3b) - Lighlty-loaded rotor
(H 2.3c) - Optimum rotor in Betz’s sense(“rigid wake” with constant velocity)
(H 2.3d) - Finite number of blades
(H 2.3e) - Uniform flow
(H 2.3f) - Un = Vn = U0, Ut = Ut = Ωr

Goldstein used infinite series, sometimes referred as Kaptain series, to find a solution for the
potential flow. The circulation found for a propeller with finite number of blades corresponding to
a minimum energy loss in the slipstream for a prescribed thrust is obtained as5:

ΓGo = 2π
B

wU0
Ω

[
8
π2

∞∑
m=0

T1,ν (νλr)
(2m+ 1)2 + 2

π

∞∑
m=0

am
Iν (νλr)
Iν (νλ)

]
(2.87)

where ν = B
(
m+ 1

2

)
. The corresponding tip-loss factor is thus:

κ = FGo =
(

λ2
r

1 + λ2
r

)−1 [ 8
π2

∞∑
m=0

T1,ν (νλr)
(2m+ 1)2 + 2

π

∞∑
m=0

am
Iν (νλr)
Iν (νλ)

]
(2.88)

This tip-loss factor was historically called the Goldstein factor and can be found noted as κ in
several references[109, 85]. Using the formal calculator Mathematica[71], Goldstein’s factor has
been calculated for this study and an example of optimal circulation distribution for different tip-
speed ratio is found in Fig. 2.13 for a two and three bladed rotor. It is seen that the difference

5See Appendix A
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between Goldstein’s and Prandtl’s circulation distribution is reduced as the number of blades or
the tip-speed ratio increases.
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Figure 2.13: Comparison of Goldstein’s circulation distribution with Prandtl’s approximation for different
tip-speed ratio. (a) Two bladed rotor - (b) Three bladed rotor. Prandtl’s approximation is plotted us-
ing dashed lines. The computation of the infinite series was performed by the author using the software
Mathematica

The work of Theodorsen In 1944, Theodorsen[108] presented a methodology for propeller
design using Goldstein’s theory. In his work though he uses Vn = U0 + w for a generalization of
Goldstein’s theory, to remove the assumption of lightly-loaded rotor. Theodorsen uses the following
notation for his derived “Goldstein” tip loss factor:

G(r) = Γ(r)
hw

(2.89)

By doing so, wake expansion[79] and highly loaded rotor can be assumed to be studied using the
Goldstein’s function. The question remains on finding the link between the screw pitch angle and
the tip-speed ratio as was discussed in Sect. 2.1.2.

2.4.2 Computation of Goldstein’s factor

As mentioned at the end of Appendix A, the computation of FGo requires care but is not unsu-
perables. Historical computation and tabulations include the work of Kramer in 1939[56], Tibery
and Wrench in 1964[109]. Nevertheless, it has been observed that due do the slow convergence
of the series, the computational time is quite important even for modern computers. In 1944,
Theodorsen used the analogy with electromagnetism and used an experimental setup with different
manufactured helical surfaces to measure Goldstein’s factor.

Recently, the computation of this factor was carried out by modelling the wake-screw as the super-
position of multiple single helical vortex filaments[79]. This method presents is fast, it presents no
numerical issue and shows perfect agreement with tables from Tibery and Wrench[109]. A detailed
description can be found in Sect. A.2 and the results from its implementation are displayed on
Fig. 2.14 and A.2.
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Figure 2.14: Comparison of Goldstein’s circulation with Betz’s circulation for different values of l. (a)
l = 1/2 - (b) l = 1/8. The computation of Goldstein’s factor is performed using the superposition of helical
vortex. In this case 150 vortices per blade were used. The thick line represent Betz’s circulation. Goldstein’s
circulation is computed for B = 2(dotted), B = 3(dashed) and B = 4(thin). Dots are taken from the tables
of Tibery and Wrench[109].

2.4.3 Comparison with Prandtl’s factor

Figure 2.15 shows the comparison between the different circulation functions and tip-loss functions
from the work of Betz, Prandtl and Goldstein for different tip-speed ratio.
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Figure 2.15: Comparison between Betz, Prandtl and Goldstein theory for a three bladed rotor. (a) Normal-
ized Circulation - (b) Tip-loss factor. The colors represent the different values of tip speed ratio taken: 2,5
and 8. The computation of Goldstein’s factor is done using Okulov’s method. The link used between the
tip-speed ratio and the helical pitch is: h = 2πR/λ.
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Chapter 3
Tip-loss corrections and their implementation

3.1 Overview of the different tip-loss corrections

The main “theoretical” tip-losses correction have already been presented in chapter 2, they will
be briefly repeated here for the sake of establishing a brief summary of the different tip-losses
correction found in the literature. This time, empirical relation will be presented as well. The
different ways to implement the tip-loss factor will be described in the following section(Sect. 3.2).

3.1.1 Theoretical tip-loss corrections

The derivations from these theories assume no expansion and distortion of the wake, which corre-
sponds to the assumption of lightly-loaded rotors. It is recalled that λ is the tip-speed ratio, λr
the local speed ratio and B the number of blades.

Prandtl’s tip-loss correction Betz derived the optimal circulation for a rotor with infinite
number of blades in [9] and as an appendix to his article Prandtl suggested a correction for a finite
number of blades(reported in english in[88]). The tip-loss correction introduced by Prandtl is the
following:

FPr,0 = 2
π

acos
[
exp

(
−B2

(
1− λr

λ

)√
1 + λ2

)]
(3.1)

The reader is referred to Sect. 2.3.4 were several variations of Prandtl’s tip-loss factor were pre-
sented.

Goldstein’s tip-loss correction Using Goldstein’s notations[36] of the T functions, the tip-loss
correction derived by Goldstein writes:

FGo =
(

λ2
r

1 + λ2
r

)−1 [ 8
π2

∞∑
m=0

T1,ν (νλr)
(2m+ 1)2 + 2

π

∞∑
m=0

am
Iν (νλr)
Iν (νλ)

]
(3.2)

where ν = B
(
m+ 1

2

)
. A detailed description of Goldstein’s article can be followed in Appendix A.
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Glauert’s correction Contrary to Goldstein and Prandtl who focused on the optimal circulation,
Glauert uses this correction in the Blade Element Method. Glauert reported[35] the work of Prandtl
and derived the tip-loss correction in the following terms:

FPr,1 = 2
π

acos
[
exp

(
−B2

R− r
R sinφR

)]
(3.3)

where φR is the flow angle at the tip. The above formula is modified in most BEM codes as advised
by Glauert to use the local flow angle φ instead, which leads to:

FGl = 2
π

acos
[
exp

(
−B2

R− r
r sinφ

)]
(3.4)

Several variations of Prandtl tip-loss factor including the one from Glauert were also presented in
Sect. 2.3.4. Glauert uses this tip-loss factor to correct the axial induction factor a only, but does
not uses this correction on the mass flux. This will be discussed in Sect. 3.2.

Just like Prandtl correction, Glauert’s correction is accurate for low tip speed ratio and high number
of blades. Its accuracy decreases as the tip speed ratio increases, or as the number of blade decreases
(usually less than three). These statements can be observed for instance on Fig. 2.13 and 2.15.

3.1.2 Semi-Empirical tip-loss corrections

Xu and Sankar Xu and Sankar[92, 75] developed an empirical model based on CFD data sim-
ulating the NREL Phase VI experiment[40]. The empirical correction suggested for this specific
wind turbine is the following:

FX,S =
{1

2
(
F 0.85

Gl + 0.5
)

when r/R ≥ 0.7
1− r

R
1−FX,S(r=0.7R)

0.7 when r/R < 0.7
(3.5)

In this model the tip loss factor does no go to zero at the tip which is for some authors considered
physically unrealistic whereas argued to be required by other authors.

Lindenburg The following correction is suggested in[62] for application in ECN codes PHATAS
and BLADEMODE.

FLi = 2
π

acos exp

−B2
(

1− λr
λ

)√√√√1 + λ2
r

(
1 + 2

√
FLi a′/2

1−
√
FLi a/2

)2
 (3.6)

This correction uses the velocity triangle just behind the rotor because, at it has already been seen
in Sect. 1.1.3, this is the part of the wake which has the most influence on the induced velocities.
The screw’s pitch angle is assessed behind the rotor1 where the radial velocity is Ωr(1 + 2a′) and
the axial velocity U0(1 − a). Prandtl defines the pitch angle at the wake radius, but Lindenburg
argues that the trailing vorticity is not concentrated at the tip, but rather distributed mainly over
the outer part of the blade. As a result of this, the pitch angle is assessed using averaged induced
velocities. In absence of tip vortex, the induced velocities from the momentum theory would be used
(i.e. multiplied by 1), and in presence of a concentrated tip-vortex, the induced velocity should
be multiplied by F according to Prandtl’s theory. In between those two situations, to account
for the distributed trailing vorticity, a factor of

√
F is retained to assess the average tip-vortex

velocity. Due to the recursion introduced, this factors is evaluated using the tip-loss value at the
previous BEM iteration step. Moreover, in comparison with roller bearings between two surfaces,
Lindenburg assumes that the tip vortices travel with a velocity averaged between the outside and
the inside of the wake. This explains the factor 1/2 applied on both induction factors.

1This definition differs from the pitch screw angle of Prandtl and Goldstein which are presumably considered in
the far wake
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3.1.3 Semi-Empirical performance tip-loss corrections

In this section tip-loss factors that applies to the airfoil coefficients are presented. The definition
of such tip-loss factor was presented in Eq. (1.28). The implementation is discussed in Sect. 3.2.

Shen et al. A new correction is suggested by Shen[98] for which the flow angle at the tip is not
zero but the forces tend to zero at the tip owing to pressure equalization between the upper and
lower surface of the blade. This correction differ from the above in the way the tip-loss factor is
applied. It is actually a second tip-loss correction applied this time on the airfoil data and which
is is used together with the classical Prandtl’s correction. The airfoil coefficients Cl and Cd, are
indirectly corrected by multiplying the normal and tangential force coefficient, Cn and Ct, by a
same factor FSh. Whether the drag should be included in the computation of the inductions is
discussed, and eventually the drag is discarded(see Sect. 3.2). The correction takes a form similar
to the one suggested by Glauert:

FCn,Sh = 2
π

acos exp
[
−g(λ)B(R− r)

2R sinφR

]
(3.7)

where
g(λ) = exp [−c1(Bλ− c2)] + c3 (3.8)

and the two first constants fitted from experimental data and the third one empirically suggested
as (c1, c2, c3) = (0.125, 21, 0.1).

Lindenburg In [62] an empirical correction is suggested for the lift coefficient based on the NREL
phase VI[40] experiment. This correction writes:

FCl,Li = 1−
( Ωr
Vrel

)2
· e−2 ARout · Cl,inv − Cl,2D

Cl,inv
(3.9)

This formula as been adapted to the formalism of the current document(i.e. Eq. (1.28)), so that
the 3D lift coefficient is obtained as:

Cl,3D = FCl,Li · Cl,2D (3.10)

In the above, Cl,inv refers to the inviscid, or potential, 2D lift coefficient that Lindenburg suggests
to take as 2π sin(α − α0), as in Eq. (1.23). Nevertheless, in Sect. 1.2.3, it was discussed by the
author that such approximation is not suitable for wind turbines, and a method such as Eq. (1.25)
is recommended to avoid having negative values of the difference of Cl,inv−Cl,2D when the 2D slope
is actually higher than 2π. The definition of ARout is the “aspect-ratio2 of the part of the blade
outboard of the section under consideration”.

Sant Together with the stall delay correction presented in Sect. 1.2.3, Sant[93] suggest an engi-
neering tip-loss correction for the NREL Phase VI rotor[40]. As for the Shen correction, the tip-loss
factor is applied on the airfoil data, but this time, directly on Cl ad Cd. The corrective factor is
given as:

FCl,Sa = 2
π

acos exp
[
−181− r/R

r/R

]
(3.11)

2See Notations on page 3
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It should be noted, that a root correction is also included in the original formula of Sant. Also,
this correction is applied on the coefficients corrected for stall delay, which, according to Eq. (1.22)
writes:

C•,3D,Sa = FSa [C•,2D + f•,Sa∆C•] (3.12)

with the symbol • referring to both L and D.

3.1.4 The historical approach of radius reduction

At the time where the BEM had to be computed manually, a common method to account for the
tip-losses was to reduce the size of the rotor by a given factor. Prandtl[87] suggested for instance
to reduce the rotor radius by his integrated factor:

Re
R

= (1− log 2
π

s

R
) (3.13)

where s = h/B cos ε(R) is the distance between two vortex-sheets in Prandtl’s analysis of the
tip-loss. Glauert[35] adapted this correction into the following:

Re
R

= 1− 1.386
B

λ√
1 + λ2

(3.14)

In [106], the following radius correction are mentioned:

Re
R

= 1− 0.5 c
R

(3.15)

where c is the average blade chord. Sissingh[100] suggested the following correction:

Re
R

= 1− croot
1 + 0.7etaper

1.5R ≈ 1− 3.56 c

πR
(3.16)

where croot is the chord at the root of the blade and etaper is the taper ratio defined as croot/c. In
1944 Wald[106] presented a correction as function of the thrust coefficient:

Re
R

= 1− 1.98

√
CT
B

(3.17)

These corrections are now left apart due to the advancement of computers and the possibility to
run fast BEM code computations.
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3.2 On the applicability of the tip-loss factor

3.2.1 Introduction

Different interpretations The way the tip-loss factor is applied mainly depends on its defini-
tion. The following interpretations can be found:
- Circulation: the tip-loss can be seen as a loss in circulation compared to the circulation found
with momentum theory.
- Induced velocities: the tip-loss factor can be applied to the induced velocities. The way this affect
the momentum and the mass flow will be discussed below.
- Thrust coefficient: in a similar fashion than the circulation correction, the thrust coefficient can
be corrected with the tip-loss factor.
- Airfoil coefficients: on top of the above corrections, a performance tip-loss factor is sometimes
applied to the airfoil coefficients

In the following, the practical applicability and implementation of the tip-loss factor described by
several authors in the literature will be presented. In a second time, different critics found in the
literature will be mentioned to give a perspective of the debates the applicability of the tip-loss
factor raises.

Axial induction To best follow the concepts used by the different authors, the distinctions on
the axial induction factors that were used earlier in this document are recalled:
- a = a(r, ψ) refers to the local axial induction at a given point on the rotor plane. The three
dimensionality effects and the finite number of blades are accounted for.
- â = â(r) refers to the 2D momentum theory axial induction, i.e. the axial induction for an
actuator disk(infinite number of blades and no tip-losses). This is often simply written as a when
presenting BEM equations (as was done in Appendix C). In this section, the distinction will be
done for clarity.
- a = a(r) refers to the azimuthally averaged axial induction defined by Eq. (1.3). At a first
approximation, the results from the 2D momentum theory can be applied to an annulus, or stripe,
using this average axial induction. Nevertheless, if the 2D momentum theory is applied on its own,
the axial induction â(r) that would be found would be different than a. Indeed for a 3D flow, with
finite number of blades a decreases towards the tip. The two would match only if the circulation
is constant along the blade.
- aB = aB(r) refers to the axial induction at the blade. This should be used in the Blade Element
Theory, to determines the proper velocity triangle and hence aerodynamic loads. Its definition is
rather difficult due to the spatial extent of the blade and the strong variations of the flow around
the blade due to the bound circulation.

The definitions and notations above are further extended to the tangential induction factor a′.
From the above it is seen that a definition of the tip-loss factor as F = â

aB
, F = a

â or F = a
aB

can
be envisaged. These distinctions will appear when studying the work of the different authors.

3.2.2 Applications in the literature

The equations from the BEM method presented in Appendix C have to be modified to introduce the
effects of tip-losses. The tip-loss function is applied either on the circulation, the induced velocity
or the thrust. The different ways this is performed in the literature is presented here without
comments and argumentations on the validity of the application. The discussion is postponed to
Sect. 3.2.3.

E. Branlard 63



CHAPTER 3. TIP-LOSS CORRECTIONS AND THEIR IMPLEMENTATION

Glauert Glauert follows the demonstration of Prandtl’s tip-loss factor(see Sect. 2.3), and hence
look at this factor as a change in the longitudinal average induced velocity between two vortex
sheets (vortex lines). Quoting his report[35, p267]:

The physical fact represented by the tip correction is virtually that the maximum in-
crease of axial velocity 2âU0 in the slipstream occurs only on the vortex sheets and
that the average increase of axial velocity in the slipstream is only a fraction F of this
velocity. [. . . ] Similarly also the angular momentum equation [. . . ]

In this correction, it is the change of velocity between the upstream and wake velocity U0 − Uw =
2âU0 which is corrected to 2âFU0, not the velocity on the rotor. Following the momentum theory
equations, this leads to the multiplication of the thrust and torque by the factor F as:

dT = 1
2ρU

2
0 (2πrdr) [4âF (1− â)] (3.18)

dQ = 1
2ρU

2
0 (2πrdr)r

[
4â′F (1− â)λr

]
(3.19)

From the above it is seen that the definition F = a
â is used, which is to say that the azimuthally

averaged axial induction a decreases towards the tip, which is not the case of the actuator disk axial
induction â. In the above âF should be replaced with aBF to correspond with Shen’s analysis.
The mass flux is not corrected here.

Wilson and Lissaman In their document from 1974, Wilson and Lissaman[117] present the
same correction as Glauert. They also suggest a refinement by assuming that the axial mass flux
should also be corrected due to tip-losses. From momentum theory, the mass flux expressed at the
rotor in an annular element is ṁ = 1

2ρdAU0(1− â(r)). This flux is corrected in 1
2ρdAU0(1−F â(r)).

The authors argue that this should affect the coefficient a but not a′.

dT = 1
2ρU

2
0 (2πrdr) [4âF (1− F â)] (3.20)

dQ = 1
2ρU

2
0 (2πrdr)r

[
4â′F (1− â)λr

]
(3.21)

The authors argue that the drag should not be used in the analysis therefore only Cl is used in this
model for the blade element theory.In the above âF should be replaced with aBF to correspond
with Shen’s analysis.

De Vries To satisfy the orthogonality of the induced velocity with the relative velocity, De
Vries derived a correction in the mass flux in the tangential momentum equation. Higher order
corrections are also suggested which are beyond the scope of this report. For more information the
reader should refer to the following reference[23].

Larrabee In his article from 1983[59], Larrabee suggests to modify the BEM equations by mod-
ifying the angle of attack by using an analogy with the lifting line theory. Larrabee provides a
complex expression for the induced angle of attack as:

αi = asin

1
4
σ
√
λ2
r + 1
F

√
(λ2
r + 1)

{
λ2
r +

(
1 + w

2U0

)2
}
−
(
w

2U0

)2

λ2
r +

(
1 + w

2U0

)2 Cl

 (3.22)
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which he approximates for small values of w/U0 (i.e. low axial induction, lightly loaded rotor) with:

αi = 1
4
σ
√
λ2
r + 1
F

Cl (3.23)

Application using the circulation Phillips[85] uses the circulation to introduce the tip-loss
correction. The circulation per blade can be calculated from the BEM code and corrected by a
tip-loss factor. Such applications are nevertheless not used anymore.

Application on the airfoil coefficients If a correction is to be applied on the airfoil coefficients,
no difficulty is found for the implementation. Depending on the interpretation chosen, the lift, the
drag, the normal or the tangential coefficients are multiplied by a tip-loss factor. This tip-loss
factor, referred in this document as performance tip-loss factor is physically different to the other
one. There is no reason for instance for Prandtl tip-loss factor to be applied on the lift coefficients.

3.2.3 Critics in the literature

Wilson and Lissaman correction Shen et al. said there is an inherent inconsistency in this
method if the chord is non-zero, because approaching the tip, aB → 1, φ → 0 but Cl → constant.
The details of the demonstration and argumentation are found in Shen’s paper[98]. De Vries also
disagrees with Wilson and Lissaman’s model because it does not satisfy the orthogonality condition
between the induced velocity and the relative velocity.

De Vries correction Shen et al. showed that the inconsistency mentioned above for Wilson and
Lissaman’s model is also raised in De Vries model. It is also said that the use of De Vries correction
gives results really close to the ones from Wilson and Lissaman.

3.3 Comparisons of the different tip-loss factors

In the following, different tip-loss functions are compared with respect to each other using a BEM
code and a wind turbine model corresponding to the NREL rotor. The tip-loss implementation
of Glauert has been chosen for all tip-loss factors except the one from Shen which has a specific
implementation.

Important note In this study, not much time was used in the modelling of the NREL rotor. The
results in this part do not intend to reproduce the results from the NREL phase six experiment.
No corrections to the airfoil coefficients were applied, a constant rotational speed of 71.93 RPM
was used for all simulation with a pitch of 5◦.

3.3.1 Comparison for one BEM run

In a first time, the different tip-loss corrections are compared with respect to one BEM computation
at 7m/s. The resulting axial induction, and angle of attack, tip-loss factor and normal loads are
compared on Fig. 3.1. Eventually, the differences in power coefficient are found on Fig. 3.2.

.
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Figure 3.1: Comparison of the different tip-loss factors when used in a BEM code. (a) Axial induction - (b)
Angle of attack - (c) Tip-loss factors - (d) Normal Load
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Figure 3.2: Differences in power coefficient when different tip-loss factors are used. (a) Power coefficient
- (b) Relative difference between the power coefficient of one simulation and the mean value between all
simulations
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3.3.2 Impact on performances

A small impact study on the overall performance of the turbine when computed with a BEM
code with different tip-loss factors is done. BEM simulations are performed for the operating
range of wind speeds in order to derive a power curve as seen on Fig. 3.3a. Two different Weibull
distributions(see e.g. [13]) are used for the assessment of the Annual Energy Output (AEP) as
displayed on Fig. 3.3b. To derive the AEP from the aerodynamic power curve, losses of 0.03%

r/R [.]

A
er
o
d
y
n
a
m
i
P
ow

er
P

[k
W
]

 

 
   

0 5 10 15 20 25
0

2

4

6

8

10

12

Glauert
No Loss
Goldstein
Prandtl
Lindenburg
Shen
Xu Sankar

(a)
Wind Speed [m/s]

H
o
u
rs

o
f
o
p
er
a
ti
o
n
p
er

ye
a
r
[h
]

 

 
   

0 5 10 15 20 25
0

200

400

600

800

1000

1200
A=8.9 - k=2.16
A=6.8 - k=2.16

(b)

Figure 3.3: Power curves and wind distribution used for the computation of AEP. (a) Aerodynamic Power
curves - (b) Weibull distribution expressed in hours of operation per year. Important variations in power
curves are seen between the different tip-loss functions.

were assumed between the aerodynamic power and the electrical power and the wind turbine was
assume to be operational 0.99% of the time. Results for the two different wind distributions are
seen on Fig. 3.4 and on Fig. 3.5. As expected, strong variations in Annual energy production
are found when different tip-loss factors are used. Two different wind distributions were used to
illustrate that no conclusions should be drawn were comparing one tip-loss correction with respect
to another: the relative differences in AEP for a same tip-loss factor can be quite different from
one wind distribution to the other, as seen when comparing Fig. 3.4b with Fig. 3.5b and looking
for instance at Shen and Xu&Sankar tip-loss correction results.
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Figure 3.4: Annual energy production for the first wind distribution. (a) AEP - (b) Relative difference
between the AEP obtained with one tip-loss factor with respect to the average between all the different
simulations.

A
E
P

[M
W
h
/
ye
a
r]

   

No Loss Glau. Gold. Pran. Lind. Shen Xu&Sa.
0

10

20

30

40

50

60

(a)

R
el
a
ti
ve

d
iff
er
en
ce

in
A
E
P

[%
]

   

No Loss Glau. Gold. Pran. Lind. Shen Xu&Sa.
−4

−2

0

2

4

6

8

10

(b)

Figure 3.5: annual energy production for the second wind distribution. (a) AEP - (b) Relative difference
between the AEP obtained with one tip-loss factor with respect to the average between all the different
simulations.
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3.4 New applications and methods

3.4.1 Possible new applications using the Goldstein factor

With the method described in Sect. A.2, the computation of Goldstein’s factor is made at a really
low computational cost and its use in BEM codes can be considered. The methods described below,
and more certainly the second one, on how to implement the Goldstein’s factor in a BEM code,
are not known by the author to be present in the literature. The reading of Sect. 2.1.2 is advised
for the considerations of the following paragraphs.

Simplest method - FGo = FGo(λ,B) = FGo(l, B) In its original form, the tip loss factor
from Prandtl, FPr,0 was a direct function of the tip-speed ratio λ (see Sect. 2.3.4). The same
can apply for the Goldstein function if Eq. (2.12) is used to relate the far-wake parameters to the
rotor parameters. This relation writes λ = 1/l, and it can be seen that under these conditions the
Goldstein tip-loss factor FGo = BΓGo/Γ∞ is independent of w, and a function of λ and B only.
Using the numerical method described in Sect. A.2 or the engineering fit provided in Sect. A.4, the
Goldstein circulation ΓGo is computed. In this context the Betz circulation is

Γ∞ = 2πwU0
Ω

λ2
r

1 + λ2
r

(3.24)

and the tip-loss factor is easily derived. This method was used for comparison of the Betz, Prandtl
and Goldstein circulation on Fig. 2.15.

Iterative method - FGo = FGo(λ,B,w) = FGo(l, B,w) Using Eq. (2.20) to relate the far-wake
parameters to the rotor parameters, then the Goldstein’s factor is not anymore linear in w and an
iterative method must be used to compute the tip-losses. In its simpliest form, the method would
be:

1. Initialize w to 0. The computation of FGo = FGo(λ,B) reduces to the method described in
the previous paragraph, the dimensionless pitch is simply l = 1/λ.

2. Perform BEM computation using the previously computed tip loss factor.

3. Compute a value for w. Unlike the Betz theory, it is unlikely that the induction will be
constant along the span, and thus velocity of the wake w is not a constant anymore. To
match with the theory, w is kept a constant by defining it as e.g. the mean longitudinal wake
induced velocity along the span3:

w =
∫ Rw

0
uiz,wdr → w ≈ 2

∫ R

0
adr (3.25)

4. Compute a new value of l using Eq. (2.20):

l = 1
λ

(
1− w

2

)
(3.26)

5. Compute the Goldstein circulation ΓGo = ΓGo(l, B,w) using the new values of l and w.
3Other choice of relation than the mean can be considered
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6. To eventually compute the new tip-loss factor FGo = BΓGo/Γ∞, the Betz circulation is re-
quired. For the simplicity of the model this circulation is taken in its simpliest form from
Eq. (3.24) but more general formulation such as the one presented in Sect. 2.2 can be consid-
ered.

7. Repeat steps 2-6 till the value of the pitch parameter l has converged.

The convergence of the process above is neither guaranteed nor enforced but the experience showed
no divergence problem.

3.4.2 Further applications

In the following part of this study different methods to obtain and apply the tip-loss factor will be
developed. Each of these methods and their applicability will be described in their corresponding
sections: chapter 4, chapter 5.
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Chapter 4
Using a vortex code to investigate tip-losses

4.1 Approach description

4.1.1 Introduction

During the period of time accorded to this study, a vortex code has been implemented to further
study tip-losses. Different vortex code versions have been implemented as described in Sect. B.1.
The wake geometry can be prescribed, set free, or set as a combination of the two. The influence
velocities can be computed using line by line methods, or ring by ring methods. The blade can be
modelled using several rings elements along the chord, or just one ring element so that the code
reduces to a simple lifting-line code. Examples of applications of these different variation of vortex
code and their validation can be found in Sect. B.2. In this section, the lifting-line version of the
code is used. The first portion of the wake is set free and is progressively forming behind the rotor
just like other unsteady free vortex code(e.g. AWSM[112]). Behind this free wake, a prescribed
helical wake is attached to model the far wake.

The interest of such a vortex code is that it intrinsically contains or models 3D effects such as tip
vortices, wake roll-up and expansion. As a result of this, this code does not need to be corrected
with a tip-loss function as the BEM code. Contrarily, it can be used to determine the tip-loss
function resulting from these 3D effects for further application in BEM codes. The methodology
used to perform this is described in the following paragraph.

4.1.2 Method description

In order to find tip-loss functions that could be used for BEM codes, a representative samples of
characteristics simulations need to be found. For this, the parameters expecting to influence the
tip-loss function need to be found. The parameters selected are the circulation distribution along
the blade and two “rotor state” parameters: the tip-speed ratio λ and the thrust coefficient CT .
The number of blade B has a critical importance, but it is here chosen to restrict this study to three
bladed wind turbines. The idea is then to determine tip-loss functions for representative sets of
these parameters so that these tip-loss functions can then be used directly for a BEM simulations
which corresponds to a set of these parameters. The question that remains is to find a way to
characterize all the different shapes of circulation that can be found in wind energy. Obviously
to parametrize a curve that varies along the blade, several parameters will have to be used. This
specific topic will be discussed in Sect. 4.2.
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The vortex code can be run with a prescribed circulation, a defined tip-speed ratio and a defined
geometry. The geometry dependence obviously has to be dropped for generality, and a way to
circumvent the fact that the thrust coefficient is dependent on the circulation has to be found. The
geometry dependence is only based on the rotor radius. The chord and twist distribution should not
have an influence on the lifting line code which reduces the blade to a simple segment. An existing
wind turbine geometry will be used, with the rotor radius scaled to unity. All the simulation will be
run with this generic rotor which makes the definition of the tip-speed ratio somehow independent
of the rotor radius. The second step is to solve the problem of interdependence between the total
thrust coefficient and the circulation. To do this, the circulation as a parameter is normalized to
unity. The thrust coefficient wanted for a given simulation will determine the multiplicative factor
that should be applied to the normalized-circulation. To find this multiplicative factor prior to
the vortex code simulation, a specific BEM code that takes as input a prescribed circulation was
implemented. This BEM code uses no drag in his formulation according to the Kutta-Joukowski
formula, so that the lift coefficient is determined as:

Cl = 2Γ
Vrelc

(4.1)

An iterative procedure is used to find the multiplicative factor that should be applied to the
normalized-circulation so that the BEM code returns the desired thrust coefficient for the right
tip-speed ratio and normalized-circulation shape. This multiplicative factor is then used as input
to the vortex code. At the end of the vortex code simulation, the thrust coefficient is computed
to check if the right multiplicative constant was found. In all cases, the two thrust coefficients
matched within less than 2% of error, hence validating the procedure.

Using the above approach, the vortex code was run for all the chosen characteristic sets of param-
eters. For each simulation, the tip-loss function was computed according to Eq. (1.26):

F = 〈a〉
aB

In a lifting-line code the definition of the rotor plane is rather simple as it indeed reduces to a plane
surface or a coned-surface if the rotor is coned. In this case, the typical rotor chosen does not have
a cone angle as the context of applicability for a BEM code is the 2D momentum theory1. Each
tip-loss function obtained is stored in a database for further use in a BEM code. The way this
tip-loss function can be implemented in a BEM code is described in Sect. 4.3.3.

The advantages of such a method is that it will provide tip-loss functions more adapted to the rotor
configuration than the specific and simplified function derived by Prandtl. This tip-loss function
includes wake expansion effects, local aerodynamics on the blade, uses a realistic wake geometry
(compared to the system of vortex planes of Prandtl). Other interesting aspects will be discussed
in Sect. 4.3.3.

4.2 Family of circulation curves

In order to establish a database of tip-loss corrections for different family of circulation curves, a
parametrization of these curves needs to be found.

1Of course, BEM codes are extended to coned rotor, but from the independence of the streamtube, the represen-
tation behind it is as if all the annular segments of the coned rotor where in the same plane.
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4.2.1 Existing parametrization

In [33], a set of load cases are generated to study the aerodynamic performance of rotors with
winglets using a prescribed and a free wake code. The circulation is modelled at the tip and root
using the form of Prandtl hub and tip-loss factor. Further, a spanwise linear variation of the
circulation is added to load the tip and the root in different ways. The model takes the form:

Γ = Ftip · Froot,Γlin (4.2)

with

Ftip = 2
π

acos exp (−Ctip(1− r)) (4.3)

Froot =
[ 2
π

acos exp (−Crootr)
]1.5

(4.4)

Γlin = rΓtip + (1− r)Γroot (4.5)

The author defines the constants as function of the tip-speed ratio and uses multiplicative constants
to define different load case scenarios. Examples of load cases as defined in the original reference[33]
can be found on Fig. 4.1.
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Figure 4.1: Different circulation translating different loading cases for two different tip-speed ratios. The
model from [33] has been used. The constants in Eq. (4.2) have been determined in the same way than
the original author to define the different loading cases: High, Medium, Low, High-Low and Low-High. (a)
λ = 3 - (b) λ = 10

4.2.2 Parametrization using Bézier curves

Examples of modelled circulation have been seen on Fig. 4.1 and more examples from existing
blades can be found on Fig. 4.4. From the variety of shapes the circulation curve can take, an
explicit mathematical formalism is hard to find to parametrize all of them. From the knowledge
of Bézier curve, it has been decided to develop a curve-fitting method to parametrize circulation
curves using this formalism. The formalism of Bézier curve is attributed and named after French
engineer Pierre Bézier who used them for the body design of the Renault car in the 1970’s. Since
then, they have been used by the drawing industry for fonts and vectorial drawing. The parametric
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Bézier curve function defined by n control points Pk in any vectorial space is

B(t) =
n∑
k=0

n!
k!(n− k)! t

n−k(1− t)kPk (4.6)

where t evolves in [0 ; 1]. Given the complexity of the circulation curves, and the double change of
concavity that could occur, a minimum of five control points seems to be required to model them.
For n = 5, Eq. (4.6) develops as:

B(t) = (1− t)4P0 + 4t(1− t)3P1 + 6t2(1− t)2P2 + 4t3(1− t)P3 + t4P4 (4.7)

In two dimensions, a total of 10 parameters defining the coordinates of the points Pk determines
the shape of the curve. An illustration of a Bézier curve with five points is plotted on Fig. 4.2.

P0

P1

P2

P3

P4

x

y

Figure 4.2: Bézier curve defined by five points. Illustration and notations. The curve always passes through
the end points and is tangent to the line between the last two and first two control points.

A further reduction of the number of parameters or unknowns is now to be performed. The
circulation curves will be described in the square-unity with the first points being located at (0, 0)
and the last point at (1, 0). With these two assumptions four unknowns are dropped and the curve
is now determined by six parameters. Writing Eq. (4.7) along the x and y coordinates leads to:

x(t) = 4t(1− t)3x1 + 6t2(1− t)2x2 + 4t3(1− t)x3 + t4 (4.8)
y(t) = 4t(1− t)3y1 + 6t2(1− t)2y2 + 4t3(1− t)y3 (4.9)

The slope of the tangent at any regular points, if defined, is m(t) = y′(t)/x′(t). For clarity, the
derivative are explicitly written:

x′(t) = 4(1− t)2(1− 4t)x1 + 12t(1− t)(1− 2t)x2 + 4t2(3− 4t)x3 + t4 (4.10)
y′(t) = 4(1− t)2(1− 4t)y1 + 12t(1− t)(1− 2t)y2 + 4t2(3− 4t)y3 (4.11)

For convenience, two other parameters, t0 and x0 are added as they will ironically make the reduc-
tion of parameters easier. These parameters define the maximum of the curve such that:

m(t0) = 0
x(t0) = x0 (4.12)
y(t0) = 1

Dummy variables a − h which are purely determined by t0 are used in the following to simplify

E. Branlard 74



CHAPTER 4. USING A VORTEX CODE TO INVESTIGATE TIP-LOSSES

notations. They are defined through:

x(t0) = ax1 + bx2 + cx3 + g (4.13)
y(t0) = ay1 + by2 + cy3 (4.14)
x′(t0) = dx1 + ex2 + fx3 + h (4.15)
y′(t0) = dy1 + ey2 + fy3 (4.16)

From the knowledge of Bézier curves and the shapes of the circulation curves it is further assumed
that the point P3 will lay parallel to the y axis, and thus x3 = 1. Developing and solving Eq. (4.12)
leads to an expression for three parameters:

y2 = 1
db/a− e

(
d

a
+ y3

(
f − dc

a

))
(4.17)

y1 = 1
a

(1− by2 − cy3) (4.18)

x1 = 1
a

(x0 − bx2 − c− g) (4.19)

The problems is now reduced to four parameters (x0, x2, y3, t0) with

x0 ∈ [0 ; 1] (4.20)
x2 ∈ [−∞ ; 1] (4.21)
y3 ∈ [0 ; +∞] (4.22)
t0 ∈ [0 ; 1] (4.23)

Reduction constraints are added in order to reproduce realistic curves:

y1 ∈ [0 ; +∞] (4.24)
x1 ∈ [0 ; x0y1] (4.25)

(4.26)

Other empirical constraints have been added to reduce the number of parameters sets based on the
fitting of existing circulations. An example of the different curve shapes that can be obtained with
this parametrization is displayed on Fig. 4.3 for x0 = 0.2. The set of parameters used for this plot
can be found on Tab. 4.1. Out of the 1089 different combination of parameters, 63 are retained
with the added constraints discussed above.

4.2.3 Illustration of the parametrization using existing circulation curves

In order to demonstrate the wide range of applications of the parametrization described in Sect. 4.2.2,
different circulation curves are fitted against this model. The original circulation curves are scaled
to fit in the square unity by dividing them by their maxima Γ0 and by reducing the radial blade
span to [0 ; 1]. A least square difference criteria between the fitted and the original curves is used
to determine the set of parameters best describing the original circulation. Examples of circulation
curves fitting are shown on Fig. 4.4. It can be seen that the parametrization is well suited for all
different kind of circulation shapes.

Important note on the fit It should be noted, that as the focus is on the tip of the blade,
the fitting algorithm has been set so that the curve is fitted from the maxima of circulation to
the tip. Spanwise variation of circulation determines the intensity of the trailed circulation. At
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Table 4.1: Range and discretization of the different
parameters used for Fig.4.3

Parameter Start Step End
x2 -1 0.25 1
y3 0 0.25 2.5
t0 0.2 0.05 0.7

x [.]

Γ
/
Γ
0
[.
]

   

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.3: Example of different family of curve that can be obtain with the current parametrization. The
different parameter values of Tab. 4.1 were used while the parameter x0 was kept constant equal to 0.2.

the maximum circulation, the trailed vorticity is zero. It is expected that the way the circulation
reduces from the maxima to the tip will be the parameter influent on the tip-loss. By focusing
the fit on this part of the circulation curve, more resolution is obtained, and more detailed from
the original curve are reproduced by the fitted curve. In opposite, the inner part of the blade is
not considered by the fitting algorithm. It is obviously possible to fit and parametrize the entire
circulation curve, but at the cost of increasing the number of parameters or loosing resolution at
the tip of the blade.
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Figure 4.4: Illustration of the model and fitting method developed for circulation curves. Original curves
are plotted in black thick lines and fitted curve in gray thin lines. The black dots represent the maximum
of the fitted curve at coordinate (x0, 1, t0). The parametrized model developed in Sect. 4.2.2 is fitted to the
portion of the original curve between this dot and the tip. It can be seen that the parametrization works
for high (a) and low (b) lift concepts, it allows specific inflexion at the tip as in (c) and (d) and fits the
Goldstein circulation curves as in (e) and (f).
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4.3 Sensitivity analysis

To ensure the reliability of the method described in Sect. 4.1 a sensibility analysis is performed
on the different external parameters that could potentially introduce variability in the tip-loss
function. For the method to be validated it is needed that only the six parameters of choice
{x0, x2, y3, t0, λ, CT } influence the tip-loss function. In a first time, its independence on the external
parameters is investigated and demonstrated. In a second time, the relative proportion in which
the chosen parameters affects the tip-loss function is studied.

4.3.1 External parameters

The influence of external parameters is studied using the same prescribed circulation. The wind
speed is fixed at 8m/s and the tip-speed ratio at 7.5. The design of a given wind turbine is scaled
to a blade length of 1m with the chord scaled proportionally and the hub radius fixed to 0.02.

Number of blades As mentioned in the introduction, the database of tip-loss correction has
been established for three bladed wind turbines but can be extended to turbines with any number
of blades. The dependence on the number of blades follow the same trend than the one from
Glauert correction as can be seen on Fig. 4.5.
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Figure 4.5: Dependence of the tip-loss function on the number of blades. Plain lines correspond to the
tip-loss function obtained with the current method, while dashed lines are the one obtained for the same
turbine configuration using Glauert’s BEM-adapted method.

Sensitivity to Bound circulation From the review of the methods to determine the angle
of attack from CFD(Sect. 1.2.1), it was seen that some methods try to remove the influence of
the bound circulation which affects strongly the flow around the blade. For the vortex code, the
axial induction on the blade is evaluated on the lifting line exactly. In the current algorithm, if the
velocity is evaluated exactly on a vortex element, the velocity is always zero regardless of the vortex
core model. Such behavior can of course be discussed. As a result of this, the axial induction aB
is the same with or without accounting for the bound circulation. For the average axial induction
a though, one can ponder if the two approaches would give the same results. It is expected to be
so due to the symmetry of the velocity field generated by the bound circulation on both side of
a segment. This results is verified on Fig. 4.6 and for illustration the decomposition of the axial
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induction between the contribution of the bound circulation and the rest of the wake is plotted on
Fig. 4.7.
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Figure 4.6: Tip-loss function obtained with and without the influence of the bound segments. ab is the same
in the case due to a choice of implementation of the singularity at the very location of a vortex element
without respect of the vortex core model. a is the same due to the symmetry of the velocity field generated
by a bound vortex element.
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Figure 4.7: Axial induction computed by the vortex code at the rotor plane. (a) Bound circulation alone -
(b) All without bound circulation - (c) All

Sensitivity to Chord distribution Given the lifting-line assumption for which the span-wise
dimension prevails over the chord-wise and thickness-wise dimensions, it is expected that the results
obtained for different chord distribution will have a negligible influence on the tip-loss correction
obtained with the lifting-line code. Results from five different chord distribution as displayed on
Fig. 4.8 confirm this statement.

Sensitivity to twist In the same line than the chord distribution sensitivity study, five different
twist distributions are tested. On Fig. 4.9 it is seen that the twist distribution does not influence
the tip-loss function.

Sensitivity to viscous model One of the critical parameters of vortex code is the way the
singularity is handled as a control point gets close to a vortex element. Several models are presented
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Figure 4.8: Tip-loss function obtained for different chord distributions. (a) Chord distributions - (b) Cor-
responding tip-loss functions using the same color scheme. The expected independence of the result on the
chord distribution is confirmed in these five different cases.
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Figure 4.9: Tip-loss function obtained for different twist distributions.
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in Sect. B.1 and they are here tested against the resulting tip-loss function shape. Though a
dependence on the viscous model is expected the results from the analysis presented on Fig. 4.10
tend to show that only the outermost portion of the tip-loss function is really affected.
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Figure 4.10: Sensitivity of the tip-loss function with respect to the different viscous models. (a) Various
models - (b) The Vatistas n = 2 model for different values of parameters δ and t.

Sensitivity to grid complexity The different parameters that affects the computational time
are studied on Fig. 4.11. Once again, only small fluctuation in the resulting tip-loss function are
observed when these parameters are changed.
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Figure 4.11: Sensitivity of the tip-loss function with respect to the grid size. (a) Influence of the number of
vortex rings n along the blade - (b) Influence of other parameters influencing the computational time: the
resolution in azimuth ∆φ, the presence of a far-wake, and the possibility for the algorithm to stop after the
induced velocities have converged and are constant over time.

4.3.2 Sensitivity to the database parameters

Wind turbine state For the given prescribed circulation displayed on Fig. 4.12, the vortex code
has been run for different turbine states determined by the couple of parameters {λ,CT }. The
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tip-loss functions resulting in these runs can be found on Fig. 4.13.
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Figure 4.12: Prescribed circulation used for the sensitivity analysis on the wind turbine state. (a) Circulation
- (b) Derivative of the circulation
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Figure 4.13: Influence of the turbine state {λ,CT } on the tip-loss function. (a) Influence of λ for CT = 0.4
- (b) Influence of CT for λ = 5. All cases have been run with the prescribed circulation found on Fig. 4.12

Circulation shape On Fig. 4.14 the tip-loss function obtained for different circulation curves is
displayed.

4.3.3 Discussion, preliminary results and method implementation

Implementation Once the database of tip-loss function has been established for a wide set of
the four different circulation curve parameters and the two rotor state parameters, it is ready to
be used in the BEM code. To initialize it the BEM code is run first using Glauert’s tip-loss factor
with a low resolution for a fast computation. The results from this simulation is used to asses the
thrust coefficient. It is indeed expected that with or without the new tip-loss model, the thrust
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Figure 4.14: Influence of the circulation distribution on the tip-loss function. (a) Circulation curves - (b)
Corresponding tip-loss function. The wind turbine state is CT = 0.2 and λ = 5

coefficient will only slightly change:a maximum change of the order of 1% was observed. The
database resolution in the thrust coefficient does not have to be high. The tip-speed ratio being
a given parameter of a BEM simulation, the two rotor states parameters are hence known. The
circulation curves and the tip-loss function from the database corresponding to this rotor state
are loaded. A new BEM run is then launched with initialized parameters the end result of the
prior BEM computation. At each iteration state, the circulation along the blade is compared to
all the circulations curves present in the database. The closest one to the current BEM circulation
is retained and the corresponding database tip-loss function is used for this BEM iteration. If
the circulation from one iteration to the other barely changes, then the comparison with all the
circulation curves from the database is not done. It would take computational time to eventually
find that the selected database circulation is the one than the one selected at the previous iteration
steps. The iterations are repeated till the BEM code converges (e.g. a tolerance criteria on the
axial induction).

It should be noted that this BEM code requires an outer loop on the iterations and an inner loop on
the radial elements. This requirements can be seen as an advantage, because the inner loop on the
elements can be avoided and replaced by vectorial computations so that all informations along the
blades are computed at the same time. The downside is that in the BEM code, the independence of
the annular elements is such that some elements converges faster than others. Typically the hub and
tip takes longer to converge, and sometimes never do due to the momentum theory breakdown. The
number of maximum iterations is thus a key parameters for the computational time. Nevertheless,
from the authors experience the choice of the imbrication order between the element loop and the
iteration loop appear to have both advantage and shortcomings in computational time, so that the
two methods are comparable. If the outer loop is the iterative loop, then the elements vector-wise
implementation clearly accelerates the code(e.g. in Matlab). Nevertheless, the converged elements
are re-computed till the non-converged elements converges. If the outer loop is the elements loop,
than most of the elements of the blades converges rapidly and don’t have to “wait” for the tip and
root elements to converges. Nevertheless, two loops are requires which slows down the computation.

Discussion Preliminary results of the tip-loss shape have been presented on Fig. 4.13 and Fig. 4.12.
From a first overview it is seen that the same behavior than the existing corrections are observed. It
is rather surprising that a small sensitivity on the circulation distribution was observed on Fig. 4.14.
The distribution studied on this figure had a wide spread of gradient, implying different trailed vor-
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ticity, hence different mechanism of vortex emission and roll-up. It seems that the importance of
the parameters governing the tip-loss function are in decreasing priority order the tip-speed ratio,
the thrust coefficient then the circulation shape.

An interesting aspect of the corrections obtained with the vortex code is that they don’t necessarily
drop to zero at the tip. It is believed by the author that this result is somehow desired as was
discussed in Sect. 1.3: the average axial induction, though dropping to zero towards the tip, does
not have to be zero at the tip. The same is then expected for the axial induction tip-loss factor
here considered. The fact that the loads might have to go to zero at the tip due to the pressure
balance will be discussed in the next chapter in Sect. 5.2.6.

As mentioned at the beginning of this chapter, the tip-loss function derived with this method
have several advantages compared to the specific and simplified function derived by Prandtl or
Goldstein. It should be recalled from chapter 2, that neither Prandtl or Goldstein’s theory includes
wake expansion. Goldstein’s theory applies only if a specific optimal circulation is present at the
rotor. The wake structure used is purely helical and does not include wake deformation and roll-up
which are described by the vortex code. Goldstein’s and Prandtl’s theories do not account for the
induced velocities when evaluating the velocity triangle at the rotor or the wake screw angle. This
reduces once again to slightly loaded rotors. Goldstein’s theory is a far wake analysis, which is
hard to apply at the rotor as was discussed in chapter 2. In this sense, the vortex code captures
more local, near wake characteristics of the flow which are relevant for application with the blade
element theory. The wake model of Prandtl with infinite flat plates, though elegant and efficient,
is rather simplified compared to the more realistic wake geometries that are obtained with a lifting
line code. For all the above, it appears obvious than better tip-loss functions will be obtained from
the methodology derived in this thesis.

BEM results The results of the implementation of the tip-loss model will be presented in
Sect. 6.2.

Further work From the database of tip-loss correction, a general tip-loss function could be
derived as function of the 6 parameters. This could be done by parametrizing the tip-loss func-
tions using for instance the same Bezier curve formalism. Three parameters should be enough to
parametrize all the tip-loss functions of the database. Using a neural network approach, a general
tip-loss function matching the input database parameters and the output tip-loss parameters could
be found. No time was allowed for this, but such an investigation would allow a generic function
of a simple form that could be directly used in a BEM code without having to fit the circulation
curve with all the database ones.
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Chapter 5
Using CFD to investigate tip-losses

5.1 Tip-losses and axial induction

5.1.1 Introduction

The first approach considered here is the definition of the tip-loss factor in terms of axial induction
as described in Sect. 1.3.2, Eq. (1.26):

Fa = a

aB

with a the azimuthally averaged axial induction defined by Eq. (1.3) and aB the axial induction on
the blade which is here to be defined. In case of a lifting line code indeed it is possible to define the
axial induction on the blade by computing the induced velocity on the lifting line. Such method
is not possible with CFD data and a way to reduce the complex velocity field around the blade to
one value has to be determined.

5.1.2 Data available and methods investigated

For a single CFD simulation case1, 3D velocity fields have been outputted in different planes parallel
to the rotor plane. Due to the assumed symmetry of the flow only the sector of 120◦sectors con-
taining one of the three blades is used. These planes are located at distances {−3.3,−1.3, 1.3, 3.3}
from the rotor plane where the lengths are expressed in % of the blade radius, and counting neg-
ative values for upstream locations. For a rotor radius R of 60m this corresponds to locations
{−2.0,−0.8, 0.8, 2.0}m. Using the velocity fields of two planes located symmetrically with respect
to the rotor plane, an estimate of the tip-loss factor at the rotor is sought. The velocity field in
the rotor plane is assumed to be the average of the velocity field in the two surrounding planes(see
a scheme of the planes on Fig. 5.1a). The flow field at the rotor plane can not be determined
otherwise due to the presence of the blade and the fast variation of the flow around the blade.
This first averaging smears out the complex longitudinal variation of the flow and a can now be
computed. This method to determine the axial induction can be seen as a simple version of the
one suggest in [48] that was discussed in Sect. 1.2.1.

To determine aB a second averaging needs to be performed to account for the spatial extent of the
blade projected in the rotor plane. The three methods suggested and studied here are illustrated on
Fig. 5.1b where the dark-gray area represents the area over which the axial induction is averaged to

1Blade 1, three-bladed rotor, 12rpm and 10m/s
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obtain an estimate of aB. The circular and rectangular methods are straight forward and depends
respectively on the chosen angle θ and rectangle side-length L. The third method uses different
central angles θi so that the arc formed at a given radius ri is equal to a certain proportion k of
the chord ci at this location, i.e. θiri = kci.

Upstream plane

Downstream plane

Rotor plane

(a)

Rectangular sectors

Circular sectors

Circular sectors of
different central angle

(b)

Figure 5.1: Determination of the tip-loss factor with CFD data. (a) Planes upstream and downstream the
rotor where the velocity is outputted. The velocity field at the rotor plane is taken as the average between
these two planes. - (b) Three different methods to determine an average velocity near the “blade” (dark-gray)
at a given radial position. The ratio between the azimuthally averaged axial velocity a(r) (light-gray) and
the “blade” averaged axial velocity aB(r)(dark gray) is computed to give an estimate of the tip-loss factor
at the rotor plane.

The effect of the averaging method on the estimate of aB is studied on Fig. 5.2. The numerical
values used for the circular and rectangular methods are of course dependent on the Rotor radius,
which is here R = 60m. The circular method is clearly not using an area large enough at the inner
part of the rotor for the estimate of ab to be a proper average over the blade’s area. The rectangular
method does not have this problem but breaks by nature the azimuthal structure of the problem.
The final method appears as a good solution offering a suitable area characteristic of the blade’s
surface at any radial position.

5.1.3 Results

It has been seen that the method and the method parameter (θ, L or k) used to assess aB have
a strong influence on its resulting value and so will it be on the tip-loss factor. By looking at
Fig. 5.2 this dependence appear to be less important on the outer part of the blade but still exists
as illustrated on Fig. 5.3. From this figure, conclusions are difficult to draw above 0.98R.

The influence of the location of the planes used to average the velocity at the rotor is expected to
have a strong influence as well. To illustrate this, the tip-loss factor obtained for the sets of planes
at ±1.3%R and ±3.3%R are compared. The further apart the planes, the smaller the effect due to
the finite number of blades is and the more local rotor information is lost. The above is observed
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Figure 5.2: Estimate of the axial induction on the blade aB using CFD data at planes ±1.3%R. Out of the
three methods presented on Fig. 5.1b, the one using different central angles is expected to give the more
representative estimate of aB .
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Figure 5.3: Influence of the averaging method determining aB on the tip-loss factor near the tip. For radial
position above 0.98R a strong dependency on the method is observed.
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on Fig. 5.4.
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Figure 5.4: Tip-loss factor estimated using different planes apart from the rotor. The effect of finite number
of blades is less captured when considering planes further apart from the rotor.

5.2 Tip-losses and aerodynamic coefficients

5.2.1 Introduction

In Sect. 1.3.2 Eq. (1.28), a tip-loss factor describing the airfoil performances at the tip has been
defined as:

FCl = Cl,3D
Cl,2D

This factor has been defined because the pressure equalization at the tip of the blade and the
formation of a tip-vortex is expected to reduce the performances of the airfoil coefficient at the
tip. The 3D nature of the flow can be observed by looking at the streamlines, as in ??. In [43],
streamlines for two-different blade-tip at different operating conditions can be found. It is expected
that FCL will be a function of the blade geometry and the rotor operating condition. Due to the
high computational time required for each CFD run an extensive study of how these parameters
affects the tip-loss FCl was not possible, but as much information as possible from existing run
cases were used as presented in the following.

Confidential content removed

Figure 5.5: Streamlines on suction side of the blade tip(2 last percent). Going towards the tip, the streamlines
are less and less parallel to the main flow. For chordwise position of x/c approximately above 25%, the flow
becomes clearly radial and one can question the validity of using 2D airfoil data in such situation.
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5.2.2 Data available

CFD simulations of different blades with different tip-shapes for different operating condition were
available. They are summarized on Tab. 5.1. These simulations were run for other purposes
than this study so that performing a sensitivity analysis on the parameters that can influence the
performances losses is made more difficult. Most of the simulations offer the advantages of covering
a wide range of operating conditions for a given blade. From these data it is possible to compare
the 3D airfoil performances from 3D CFD with 2D lookup table data, mostly obtained from 2D
CFD. A complete overview of such comparisons can be found in Sect. D.2.

Table 5.1: Available CFD cases for investigation of aerodynamic performance losses

Name Tip Number of runs Type
Blade 1 Tip 1 6 “Rough” - pitch sweep with off-design cases

Tip 2 4 “Rough” - pitch sweep with off-design cases
Blade 2 Tip 1 7 “Rough” - operating conditions

Tip 1 7 “Clean” - operating conditions
Blade 1 swept Tip 1 4 “Rough” - rpm sweep with off-design cases

2D airfoil characteristics are known for different thicknesses. The thickness distributions of the two
blades considered can be found on Fig. 5.6.
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Figure 5.6: Thickness distribution and available 2D profile data of the two blades considered. B1 (black) -
B2 (gray)

5.2.3 Polar comparison between 2D and 3D CFD

As a first step, the profile coefficients obtained from 3D CFD are confronted to the 2D lookup
table data(obtain with CFD). As seen on Fig. 5.6, only a finite number of 2D airfoil coefficient
tabled are known for a given thickness. For each thickness value and each simulation, the lift and
drag coefficients together with the angle of attack from CFD data are extracted at the first radial
position where this thickness is encountered along the blade span. These values are then compared
with the 2D polars. The results for all different polars(i.e. thickness values), all different blades
and all different simulations can be found in Sect. D.2. Among these results it is interesting to
point out that rotational augmentation is observed for large relative thickness values (inner part of
the blade), but of prime interest here are the effects at the tip of the blade. For this reason, the
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airfoils coefficients obtained for the smallest relative thickness (blade tip) are displayed on Fig. 5.7
for Blade 1.
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Figure 5.7: Blade 1 airfoil polars for the relative thickness 18%. The 2D data available are plotted with plain
and dashed line. For each simulations available, a different couple of value (α,C•) is extracted from CFD and
from BEM computation(using clean profiles). Markers surrounded by a black line are data corresponding to
Tip 2, as opposed to Tip 1 for the other markers.

Agreement is fairly good between the 2D data and the 3D data for the relative thickness 18%. By
looking at results from Sect. D.2, the agreement is even better for thicknesses above 18% and below
30%, which corresponds roughly to the outer 2/3 part of the blade. This corresponds indeed to the
region where the flow is known to behave in good approximation with 2D flow. The differences at
the tip will be the focus of the next paragraph.

5.2.4 Tip-loss function from the ratio of Cl

Method In the previous paragraph(Sect. 5.2.3), the 2D and 3D data were compared for radial
positions where the relative thickness was exactly the one used for the 2D table. For a complete
assessment of the tip-loss though, more radial positions towards the tip are needed. For this
study, the range of the blade from 0.8R to the end is investigated. The angle of attack and airfoil
coefficients from CFD (α3D, C•,3D) are extracted for the outer part of the blade. This angle of attack
is then inputed to the method used by the BEM code to interpolate airfoil coefficients between
different thicknesses and Reynolds number, to obtain a corresponding “2D” airfoil coefficient C•,2D.
The ratio between the 3D lift coefficient and the interpolated 2D lift coefficient provides the tip-loss
function FCl as defined earlier in Eq. (1.28). As seen on Fig. 5.6, blade 1 has the advantage of
keeping a constant profile thickness from 0.95R to the blade end. This will ensure a good quality
of results in this range as no interpolation is used to obtain the 2D coefficient.

Data overview for Blade 1 Using the method previously described for all six CFD simulations
available for Blade 1 with Tip 1, the interpolated 2D and the CFD 3D data are compared on
Fig. 5.8. The different simulations were designed so that the angle of attack from one simulation
to another would increase by around 3 degrees, thus allowing a nice comparison between 3D polars
and 2D polars. For each simulation, the data points should be read from right to left to understand
it as data going in the spanwise direction from around 0.8R to the very tip. For this blade the
angle of attack is indeed decreasing when going towards the tip. Reading each simulation from
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right to left, it is seen that the 3D and 2D data diverges progressively hence showing a performance
loss at the tip. The 2D data don’t match the polar when the thickness is over 18% due to the
interpolation between the 21% and 18% data sets. Going towards the tip(to the left), the thickness
goes to exactly 18%, the 2D data are no more interpolated and match exactly the 2D polar.
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Figure 5.8: 3D and 2D polars for relative thickness between 18% and 21%. The tabulated 2D rough polars
are plotted to illustrate the interpolation method on thickness. The ratio between the interpolated 2D data
and the 3D CFD data, when read from left to right(i.e. toward the tip) provides the performance tip-loss
factor.

Tip-loss results for Blade 1 The results from the left plot of Fig. 5.8 can also be plotted
against the radial coordinate as done on Fig. 5.9a and 5.10a. By doing the ratio of the 3D lift
coefficient versus the interpolated 2D lift coefficient, the performance tip-loss factor is computed
and the results from Blade 1 can be seen on Fig. 5.9b for the first tip, and on Fig. 5.10b for the
second tip.
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Figure 5.9: Airfoil tip-loss function for Blade 1 and Tip 1. (a) Cl,3D and Cl,2D - (b) Tip-loss function FCl.
The presence of Prandtl tip-loss factor is for reference only as the comparison is not physically correct. The
color scheme between the two figures is preserved. It is interesting to note that despite the wide range of
operating conditions studied, the tip-loss function observes few changes.
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Figure 5.10: Airfoil tip-loss function for Blade 1 and Tip 2. (a) Cl,3D and Cl,2D - (b) Tip-loss function FCl.
The presence of Prandtl tip-loss factor is for reference only as the comparison is not physically correct. The
color scheme between the two figures is preserved. The tip-loss function observes almost no changes between
the different simulations.

Data correction Looking at Fig. 5.9b and Fig. 5.10b, it is seen that the ratio between 3D and
2D data is around 4% lower than one for regions were the flow is expected to be close to 2D (e.g.
0.8%R). For the second blade, the same has been observed but in the order sometime of 10%. This
is due to the fact that the 2D tabulated data for Blade 2 comes from wind tunnel measurement
and not from 2D CFD as for Blade 1. The “roughness” and turbulence condition between the
CFD simulation and measurement don’t match, and such differences can results in differences of
several percents. Nevertheless, it is expected that the relative variations of aerodynamic coefficients
are conserved in a first approximation2. As the focus is here to look at the relative variation of
coefficients at the tip, the 2D lift coefficients will be adjusted to match in amplitude with the 3D
CFD lift coefficient at location 0.8R. The difference of amplitude in regions “close to 2D” is not
what is intrinsically looked after in this analysis. By doing this data correction, the performance
tip-loss factor is forced to one for the inner tip, thus allowing an analysis of this effect independently
of external simulation or experimental factors.

Comparison of all cases Applying the small data correction mentioned above to ensure that
the performance tip-loss goes to one at the inner tip, the tip-loss factor for the different blades and
tips is computed, averaged and reported on Fig. 5.11. It is quite interesting to note that for these
different designs the shape of the performance tip-loss FCl seem to follow a similar trend. The only
curve that does not quite follow is the one from the “clean” Blade 2 case. Nevertheless, this outlier
is expected because “clean”, optimistic CFD data is compared with an experimental data which is
closer to “rough” CFD. This outlier being kept assside, the comparison between the four different
design is really good. Still, it is should be kept in mind that the two tip-design are really close to
each other. More tp-shapes are to be studied to investigate the performance tip-loss effect and the
proportion in which it occurs.

5.2.5 Ratio of drag coefficient

In the previous analysis, the differences of performances in lift between 2D and 3D situations has
been used to define a performance tip-loss factor. For almost no computational cost, the same can

2It will appear that this does not hold true when comparing “clean” CFD with experimental data
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Figure 5.11: Comparison of airfoil performance tip-losses FCl for different designs. A general trend is found
between all the different cases, especially if the expected outlier “Blade 2 - clean” is discarded. Neverthe-
less, the different designs are quite similar and more should be tested to conclude for trends and relevant
parameters.

be evaluated with the drag coefficient. The drag coefficient in 3D has been observed to be higher
than its 2D relative. In order to keep a value between 0 and 1, the ratio is inverted as:

FCd = Cd,2D
Cd,3D

(5.1)

The computation of the drag ratio for Blade 1 is found on Fig. 5.12. For the different simulations
of Blade 1 Tip 1, a large fluctuation on the drag ratio is observed. This is expected due to the
drag sensitivity to turbulence, especially in separated regions. Turbulence in separated regions is
highly tri-dimensional and hence is badly described by 2D simulations. Moreover, as small error in
the estimate of the angle of attack would results in larger relative error in the drag coefficient that
in the lift coefficient due to the high lift-over drag ratio. No further analysis of the ratio of drag
coefficients for the investigation of tip-losses will thus be done in this study.
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Figure 5.12: Ratio of drag coefficients for Blade 1. (a) Tip 1 - (b) tip 2
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5.2.6 Generalization, discussion and comparison with literature

Physical considerations on the performance tip-loss factor At the blade tip the radial
gradient of dynamic pressure vanishes progressively. The centrifugal effects and the radial suction
associated, should also disappear for radial locations after the tip. This reduction is of course
expected to occur progressively. As a results of this Lindenburg[62] argues that at the tip the
flow in the boundary layer and in the separation trailing-edge area is not pumped further radially.
Nevertheless, the radial flow from sections before the tip result in a reduction of the negative
pressure on the airfoil suction side compared to the non-rotating case. Lindenburg hence concludes
that “the rotating lift coefficients of the tip sections are smaller than the non-rotating lift coefficients,
while the flow is still not in stall”.

Suggested model for generalization The small variability of the performance tip-loss function
FCl with regards to operating conditions and tip-shapes, invites to find a simple model that could
well represent this function. Whether this model would suit other tip-shapes than the one tried is of
course doubtful, but the general trend is expected to be respected though. Analyzing experimental
data, a dependence on the performance tip-loss factor with respect to the angle of attack could be
expected. This was observed for instance by Lindenburg[62, p 45] by looking at the NREL Phase
VI experiment. Early analysis of the CRADA project[65, p 66] seem to show similar behaviors.
In the cases considered the angle of attack distribution towards the tip is close to constant and
no significant dependence on the operating conditions were observed. For this reason models
independent of the angle of attack are presented here but further refinement should be considered
in the future. Three generic models are suggested to fit FCl . These models could be used in another
study involving different tip-shapes, or be directly used in BEM codes as explained in Sect. 3.2 in
the section involving the correction of the airfoil coefficients. The different functions suggested in
this study to fit the tip-loss factor FCl are:

Acos-Fit FCl = 2
π

acos exp [−C(1− r)] with C = 63 (5.2)

Acos shift-Fit FCl = 2
π

acos exp [−C(1− r) +D] with (C,D) = (48,−0.5) (5.3)

F-Fit FCl = 1− C (1− r)ν1

(2− r)ν2
with (ν1, ν2, C) = (0.39, 64, 2.5) (5.4)

The first one is an obvious reference to the work of Prandtl and the second one add the flexibility for
the tip-loss function not to go to zero when r = 0. The third function, referred as “F-fit” has been
inspired by the statistical F-distribution. Looking at the cases where the tip-loss function increases
back close to the tip, the curve shape reminds the one of a skewed statistical distribution. Canonical
distributions that allow skewness are for instance: Weibull, Chi-square, Gamma-distribution, Log-
normal. The parametrization from the F-distribution has been chosen for it was believed to provide
a good family of curves with different curvatures and an ease to use. The different fit from Eq. (5.2)-
(5.4) are plotted on Fig. 5.13.

Discussion The “performance” tip-loss factor based on the lift coefficient as derived above clearly
relies on how accurate the angle of attack is determined from 3D CFD data. The method used in
this study is a simple form of the averaging technique developed in [48, 43]. Earlier in this report
in Sect. 1.2.1, the critical issue of angle of attack determination has been pointed out. Several
techniques that account for the bound circulation of the blades seem to give better results and have
less dependency on the distance to the rotor plane chosen[47]. Such methods could be investigated
in the future to see how much it could affect the performance tip-loss factor developed above. A
sufficient amount of CFD simulations and the blade/tip geometries were studied to see general
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Figure 5.13: Suggested models for the performance tip-loss factor.

trends, but a broader range of tip-shapes with simulations at similar tip-speed ratios would be
desired for a more throughout study. Despite of the above, the consistency in the results between
the different simulations is comforting, and proves the applicability of the models from Eq. (5.2)-
(5.4) as a first approximation before a more complete study is done. At this moment a distinction
between these models is not really possible. Data from measurements are usually not available
above 0.95% or 0.97% radial positions, and CFD data seem to show different behaviors above
0.97%. In Sect. 1.3, it was mentioned that it could be expected that the loads on the blades have
to be zero at the tip due to the pressure equalization. This is the view also shared by Shen[97].
With this argument then, the model from Eq. (5.2) should be used. Nevertheless, the Model from
Lindenburg discussed below does no impose this condition, and all the three different models from
Eq. (5.2)-(5.4) are left open for discussion.

Comparison with literature In the literature, studies by Shen[97] and Lindenburg[62] per-
formed similar comparisons. These corrections were presented in Sect. 3.1.3. Shen et al used
experiments from the NREL rotor and the Swedish WG 500 rotor to find a performance tip-loss
function that would fit the experimental Cn and Ct. Shen used a form of tip-loss function that
resembles the one from Glauert, with parameters {r, φ, λ,B}. Lindenburg used the data from the
NREL phase VI experiment to find a fit for the ratio between the measured 3D lift coefficient and
the 2D one(as was done in this chapter). The parameters used by Lindenburg are {r,AR, Cl,inv}.
Comparisons with these empirical relations and the one derived in this studied were attempted.
Nevertheless, it appeared that none of those models could be fitted to the performance tip-loss
function found in this study. The parameters attempted to be adjusted for the fit were (c1, c2, c3)
for Shen’s model, and the coefficient in front of ARout for Lindenburg’s model. For the latter, due
to the large aspect ratio found, the factor was only affecting the last 0.1% of the blade with a
minimum amplitude around 0.98. Lindenburg argues indeed that for large wind turbine his cor-
rection is expected not to be strong. On the contrary, the model of Shen shows corrections way
more important than the model suggested in this study. An example for one simulation is shown
on Fig. 5.14. These comparisons were done for all the CFD simulations available and the atten-
tion was on finding similar variations and trend between the models. As mentioned earlier, small
variations were present in the model of the current study. Even within these small variations, no
trend following the tip-speed ratio were found, whereas Shen’s factor clearly shows variations for
this parameter. Whether this is due to a specific tip design that has a similar behavior invariantly
of the tip-speed ratio, a problem in this study for instance in the determination of the angle of
attack, or a difference between using CFD data and experimental data, is still to be determined.
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Figure 5.14: Comparison of the performance tip-loss factor from this analysis with the one from Shen for
one CFD simulation.
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Chapter 6
Results and comparison of the different codes
and approaches

In this chapter, final result comparisons between CFD, BEM, and the lifting-line version of the
Vortex code implemented are presented. In a first section, general comparative results between
the three codes will be presented. For validation results of the vortex code, the reader is referred
to Sect. B.2. In Sect. 6.2, the results from the new-tip loss corrections will be shown and the
advantages of the approach used in this study will be put to light. In a third section, the BEM
code with the new tip-loss model will be compared with CFD data, and a discussion will follow.

6.1 General comparisons

6.1.1 Induced velocities at the rotor plane

The computation of the induced velocities at the rotor from CFD data has been discussed in
Sect. 5.2. The methods used either planes distant from 1.3%R or 3.3%R. The vortex code was used
to compute the induced velocities in these four planes, and average them to compare the estimated
average axial induction at the rotor. Results from CFD and the vortex code are presented on
Fig. 6.1 and Fig. 6.2. On these figures the azimuthal angle is indicated according to the rotation
of the blades.
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Figure 6.1: Axial induction obtained by averaging planes at ±3.3%R.

97



CHAPTER 6. RESULTS AND COMPARISON OF THE DIFFERENT CODES AND APPROACHES

The axial induction obtained by the averaging of closer planes as a slightly higher amplitude
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Figure 6.2: Axial induction obtained by averaging planes at ±1.3%R.

and more details. In general the vortex code and the CFD data matches really well and shows
the same trends. For any azimuthal direction behind the blade, from the hub to the tip, the axial
induction increases, stays rather constant and decreases towards the tip. For azimuthal direction
closer to the blade an interesting behavior is observed close to the tip. The axial induction actually
increases towards the very tip illustrating the higher values of aB discussed in this report to define
the tip-loss factor. This can be understood with the formation of the tip-vortex. At the tip, the
streamlines bends and rolls-up implying that an important part of the axial kinetic energy of the
flow is transfered to rotational kinetic energy, i.e. the axial velocity decreases(aB increases) while
the radial and tangential velocities increases. Both codes capture well this behavior. The strong
jump of axial velocity on both side of the blade is explained by the bound circulation. The influence
of the bound circulation can easily be removed in the vortex code but is more difficult with the
CFD. The task is not insuperable though, and should be investigated in the future. This could
be done by assessing the circulation on the blade with the Kutta-Joukowski theorem, model the
blade as a lifting line and compute with the Biot-savart law the induced velocities due to the bound
vorticity only and substract it to the CFD induced velocity.

It should be noted that the small difference in intensity between the two codes is due to a cone
angle projection, the blade having indeed a 5◦cone angle. The planes outputted by the CFD post-
processor appeared to be slanted and their actual definition is still under investigation. The planes
used for the vortex code were planes perpendicular to the rotational axis (no tilt angle). For a
coned rotor, the questions of which planes planes to use is indeed difficult as the blade follow the
surface of a cone as it rotates. The appropriate solution could be to use coned surfaces axially
translated from the rotor coned surface. If the rotor is tilted, the situation is even more complex.
In any case, for a good comparison with the momentum theory, only the axial velocity, parallel to
the ground, should be used, and not the velocity perpendicular to the plane.

6.1.2 Wake deficit plots

As another illustration of the performance of vortex code, it is possible to compute the wake deficit
for different axial positions behind the rotor. Such figure is seen on Fig. 6.3 where the vortex code is
compared to CFD. Good agreement is found between the two codes, excepts around the rotational
axis. This is obviously due to the absence of the nacelle in the vortex code formulation. A way to
go around it would be to model the nacelle with a vortex ring such that the flow is blocked in the
rotor plane where the nacelle should be located. Such implementation was not considered for this
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Figure 6.3: Wake deficit computed with the Vortex Code and CFD. Two different representations are given
to help conceptualizing the notion of wake deficit: (a) Axial Induction - (b) Velocity ratio

study which was focusing on the tip of the rotor.

6.1.3 General comparison of the different codes

In this section, a wind turbine at one operational point has been simulated with the three different
codes available, namely, the BEM, CFD and vortex lattice(VL) code. The wind turbine considered
is equipped with a Blade further referred as Blade 2, with a cone angle of 5◦. The operating
condition is 10.7rpm, 6m/s and −2.0◦of pitch.

Some key variables obtained by the different codes are compared on Fig. 6.4. Given the large
differences between the physical models behind each code the results are quite satisfying. It should
be noted that the CFD computations were run in a conservative way, explaining the lower torque
performances observed when compared with the two other codes that uses clean 2D data. Also, the
axial induction from CFD is computed using an averaging technique over the entire rotor disk and
hence does not represent the local axial induction aB as they other code do. The axial induction
obtained with the vortex code is erroneous at the inner part of the blade due to the absence of
nacelle’s model (this was observed in Sect. 6.1.2). Apart from this differences, the three codes
agrees really well which can be considered as a validation of their performance prediction, though
(reliable) experimental data are eventually the only judge of such performances.
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Figure 6.4: Comparison of the results obtained by the different codes when studying a specific wind turbine
(Blade 2)
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6.2 Examples of BEM results using the new tip-loss models

6.2.1 Comparison between the vortex code and a BEM code with the new
tip-loss model

One of the main goal of this analysis is to be able to use the higher degree of description of the
unsteady vortex code in the BEM code. The new tip-loss correction derived with the vortex code
as explained in Sect. 4.1 is used in a new BEM code implemented as described in Sect. 4.3.3.
The unsteady vortex code is accounting for wake roll-up and wake expansion. When used as a
descriptive tool(using 2D polar data), it should hence provide a more realistic representation of the
flow than a BEM code. The purpose is here to see in which proportion the new BEM code is close
to a descriptive vortex code simulation. In other word, can a BEM code perform as well a vortex
code when used with the new tip-loss model.

Results for two different blades analyzed with the Vortex code and the BEM code are presented on
Fig. 6.5 and Fig. 6.6. It is seen from the two figures that the new BEM code eventually converges
using a tip-loss function which is really close to the one obtained with the vortex code. Such results
can be seen as the fact that the BEM code is “performing as good” as the vortex code. Using the
corrections from the database the BEM code now accounts for wake expansion and roll-up. It is
also observed that the tip-loss function obtained by the new BEM code is quite different from the
one than Glauert. Though the differences are small, a more physical solution is obtained with the
new tip-loss method. Also, it is worth noting that small differences at the tip can have important
influence on the torque or flap moments due to the large lever. This can represent significant
loss/gain of power and significant change in the loading at the tip which can affect the structural
blade design. As an example the local flapwise moment along the blade is represented on Fig. 6.7
for the two BEM codes.
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Figure 6.5: Comparison of the new BEM code performances compared to the vortex code - Blade 1. (a)
Tip-loss function - (b) BEM circulation and corresponding one from the database

From the results of Fig. 6.5 and Fig. 6.6, it has been observed that the new BEM code performs
comparatively to the vortex code. During the BEM iterative process, time is spent looking up the
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Figure 6.6: Comparison of the new BEM code performances compared to the vortex code - Blade 2. (a)
Tip-loss function - (b) BEM circulation and corresponding one from the database
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Figure 6.7: Differences in the local flap moment between the two BEM codes. (a) Physical values - (b)
Relative difference
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different circulation available and retrieving the corresponding tip-loss. The overall time of this new
model is about twice the time of a normal BEM computation. A rough estimate of computational
time is seen on Tab. 6.1. The BEM and Vortex code simulations were run on a single core while the
CFD computations are usually divided between several dozens of cores(in this example 72 cores).
The vortex code can also take strong advantage of parallelization so that the computational could
be easily reduced. Even with high complexity, on a single core, the vortex code computation for the
resolution required never exceeds 1 hour. From this quick estimate, it is seen that vortex codes are
still too slow to be used as designing tools were a lot of iterations are performed in the optimization
process. On the other hand, BEM codes are suitable for this, and it is seen that the new BEM
code with this new tip-loss model obtains quite similar performances than the vortex code at only
a small computational cost.

Table 6.1: Comparison as a rough guide of typical computational time for the different codes. The new BEM
code refers to the code using the new tip-loss model described in this report.

Code BEM BEM (New) Vortex Code CFD
Computational time 2s 4s 12 min 1 day

6.2.2 Comparison of BEM with CFD - Performance tip-loss factor

In the following two different wind turbine designs are analyzed with a BEM code using either
Glauert’s tip-loss correction or the new tip-loss correction. On top of this correction, the results
with or without the “performance” tip-loss function from Eq. (5.2) are studied. For the two blades,
Blade 1 and Blade 2, CFD data was also available for comparisons. Results from the different
designs are commented in the following paragraphs. On Fig. 6.8, the circulation from the database
that was the last(in the BEM iterative process) to fit the best the BEM circulation is displayed.
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Figure 6.8: Circulations from the database used by the BEM code. (a) Blade 1 - (b) Blade 2. It is expected
that if a circulation curve close to the BEM one is found in the database, then the tip-loss function from the
database should be well adapted to this BEM simulation.

Blade 1 Blade 1 was run at 10m/s and 12 rpm with -2.7 degrees of pitch, with some results
shown on Fig. 6.9. For this simulation the 2D “clean” coefficients were used, explaining the shift
of results between the BEM simulation and the CFD simulations which corresponds more to a
“rough” case. The Comparison between Glauert’s and the new tip-loss model is rather small in
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this example. In a sense this is comforting proving that the new-tip loss model is coherent with
this common correction. It was also said in Sect. 6.2.1, that small differences at the tip can have
large influence on moments. The performance tip-loss factor clearly affects very last part of the
tip, and as a result of this, the BEM results match better the CFD ones.
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Figure 6.9: Results from the New tip-loss model compared with CFD and BEM for Blade 1
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Blade 2 Results for Blade 2 are shown on Fig. 6.10. This simulation was run at 10.7 rpm with
a wind speed of 6m/s and -2◦of pitch. For this blade the airfoil data matches well the CFD data
and the two simulations are in really good agreement. Once again, the difference between the two
tip-loss models is rather small.
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Figure 6.10: Results from the New tip-loss model compared with CFD and BEM for Blade 2
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6.3 Comparison of tip-loss factors using CFD as a reference

Comparisons of tip-loss factor without using CFD as a reference were found in Sect. 6.2.1. The
discussion whether CFD can be taken as a reference will follow in a next section. In this section the
evaluation of the tip-loss function from the BEM code, the vortex code and CFD data is studied.
Only the standard “axial induction” tip-loss function is considered, and not the performance tip-
loss factor. On Fig. 6.11a on overview of the tip-loss function that is obtained from the three
different codes applied on the same blade under the same conditions is found. The two different
plane distances used in CFD are represented. As was already discussed, the closer to the rotor
plane, the more the effect of finite number of blades is observed. The vortex code and the CFD
seem to reveal similar trends, especially when the comparison is done using the same averaging
techniques at the same planes (Fig. 6.11b). More information on the averaging technique can be
found in Sect. 5.1. The vortex code was run using as prescribed circulation the one from CFD. The
spike observed around 0.82% span is actually found in the circulation distribution from CFD.
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Figure 6.11: Comparison of the tip-loss function obtained with the three different codes. (a) Results from
the three different codes, the BEM code is run with Glauert’s tip-loss factor, and the vortex code is run by
prescribing the circulation from CFD - (b) Influence of averaging using planes distant to the rotor planes.
Accounting for the fact that the vortex code evaluates the tip-loss function at the rotor plane where CFD
uses planes distant from the rotor, it seems that the two codes follow similar trends. This is confirmed by
figure (b), when the vortex code uses the same averaging method than CFD.

On Fig. 6.12, different approaches are considered. First the vortex code can be used as above with
the prescribed circulation from CFD. It has been seen indeed that in this manner the vortex code
gives a good estimate of the tip-loss factor at the rotor. IF CFD results are assumed to be the goal
towards which BEM codes should converge, then this tip-loss function is plotted as a reference on
Fig. 6.12a. Nevertheless, it is seen on Fig. 6.12b that the BEM circulation obtained is far from the
CFD circulation. The new tip-loss models tries its best to find a circulation in the database that
could fit the BEM circulation. The fitted circulation found in the database does not fit the CFD
data obviously but it is observed that its derivative follow a similar trend. This could potentially
mean that the relative intensity of the trailed vorticity is similar to the CFD one. This could
explain why the tip-loss function from the new tip-loss model matches relatively well the CFD
tip-loss function between 0.8 and 0.95% span. Above this span, Glauert’s tip-loss function agrees
better with the CFD results. It can be seen that conclusions are really hard to draw due to the
inherent differences between all the different codes. More discussion will follow in the next section.
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Figure 6.12: Comparison of different approaches driven by different circulations. (a) Tip-loss function -
(b) Normalized Circulations. The color and style schemes between the two plots correspond to each other.
Between 0.8 and 0.95% the new tip-loss model seem to better capture the increase of local induced velocity,
nevertheless conclusions are really hard to draw.

6.4 Discussion

General observations At a first glance, the difference between Glauert’s tip-loss function and
the new tip-loss function can be observed to be rather small. Such observation is of course comfort-
ing as it shows that the tip-loss corrections obtained with the vortex code are coherent with respect
to Glauert’s model which has been used in BEM codes that have been validated extensively. Even
though the differences between the tip-loss factors are small, it can have important influence on
quantities such as moments which benefit from a large lever towards the tip(see Sect. 6.2.1). These
small differences can thus mean a lot for structural design of the blade, implying different stiffness
and mass repartitions to withstand the loads.

Discussion on the method One of the problem at this stage of development of the new tip-
loss model is that the quality of the results depend on how well the database circulations fit the
BEM circulations. Only few sets of parameters have been deployed in the database at this stage.
Due to the rather high number of parameters (6), having a high resolution database and hence a
high resolution of circulation curves and rotor states that can be used in BEM codes requires an
important computational time. Using one month of computation on a single machine with four
cores, such a high resolution database can be obtained. On top of improving the resolution of the
database, an improvement of the methodology can also be considered. Indeed, as was observed
in the sensitivity analysis, the shape of the circulation curve appeared to have a small influence
on the tip-loss factor, which was rather surprising. On the other hand, from the implementation
in the BEM method, it appeared that the quality of the fit between the BEM circulation and the
database circulation would affect the overall result. It is believed that other levers could be found
in the future, and a better insight on how to handle the vortex code model for the last five percent
of the blade is to be investigated.
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Comparison with CFD When doing comparisons with CFD the results should be taken with
a grain of salt. On one hand, the quality of the 2D coefficients used by the BEM code is one
key parameters that influences the quality of the results so that the evaluation of the new tip-loss
function is rather difficult. It has been seen for instance in Fig. 6.12b) that the circulation found
with a standard BEM code and CFD can be quite different. One can thus questions if it is wise
to compare CFD results with the BEM method with the new-tip-loss model knowing that such
differences exists. On the other hand, the source of uncertainty from CFD data should not be
forgotten. Many parameters come into play in the solving process that can affects the CFD results
(turbulence model, transition model, convergence criteria, grid, etc.).

Performance tip-loss factor From the work of Shen[97], Lindenburg[62] and the current, a
need to correct airfoil coefficient towards the tip is confirmed.

Performance of the vortex code It has been seen that when used with the prescribed circu-
lation from CFD, the vortex code was giving results in good agreement with CFD. In this sense, it
is also expected to give a good assessment of the tip-loss function at the rotor plane, thing which
is currently not possible with CFD.

Experimental data A need to compare the existing models with experimental data clearly
appears. It is nevertheless difficult to instrument a blade at its tip. Comparisons are of course
envisaged for the future of this work using both internal experiments and reference experiments
such as the NREL phase six experiment.

Benefit of the method As was discussed in Sect. 4.3.3, there is high potential for such a
methodology to give results in many aspects more realistic and more precise than the theoreti-
cal approaches of Prandtl and Goldstein. The parametrization and methodology could need to
be re-thought and the vortex code slightly improved, but is is believed that such approach can
highly improve the knowledge on tip-losses and make BEM codes more realistic. The preliminary
study done in Sect. 6.2.1 showed a great benefit of the method. The new BEM code seems to
offer performances really close to the vortex code for almost no computational time. The BEM
model is improved and can be further used for design and optimization purposes due to the small
computational cost added with the new tip-loss model.
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From theory to the development of a vortex code A better insight on the origin of tip-losses
both historically and physically has been acquired through the first part of this study. Going from
simple models with infinite number of blades to more advanced ones, the 3D flow characteristics
around a wind turbine were progressively put to light. The notion of tip-losses appeared when
studying the 3D effects that affect the wind turbine performances. In this study the distinction
between flow characteristics close to the rotor and far behind it was emphasized, giving rise to
the notions of near-wake and far-wake. The structure of the wake and its dynamics has been
presented. Given the important vorticity found in the wake and its concentration to vortex sheets
and tip-vortices, a great descriptive and predictive tool was found to be the vortex theory. On one
hand, this theory led to the development of important theorem from Munk and Betz which were
later complemented by the only two theoretical studies of tip-losses: the work from Prandtl and
Goldstein. On the other hand, vortex theory can be applied for numerical methods which leads to
the development of different vortex codes. The implementation of a vortex-lattice code was hence
chosen to further study tip-losses and account for higher complexity than the theoretical work from
the beginning of the 20th century.

Historical work on tip-losses Historically, the concept of tip-losses appeared when looking for
the circulation that would lead to the minimum energy loss. By focusing on the theories of Betz and
Prandtl, the original notion of tip-losses and its applicability was presented. Nevertheless, it was
seen that several interpretations could be given due to the simplicity of Prandtl model compared
to a real wake flow. The study of Goldstein’s theory which model the wake in a better way also led
room for discussion. Results from the theories apply to the far-wake and their relations to the rotor
parameters is not straightforward. The pitch of the helix, its rotation and the induced velocities
are different than the one at the rotor. Using assumptions of no wake expansion and conservation
of circulation relations between far-wake parameters and rotor parameters were established. It has
been pointed out that the relations used in contemporary articles are different than the one used
originally. As many figures as possible were provided to illustrate the different relations and the
focus has been on applying this figure to the wind turbine case to avoid any further confusions.
Hopefully with this report, the reader can assimilate the historical work of the German school
without going through the original articles which uses different notations and conventions. Their
reading is nevertheless quite interesting and the author highly recommends the curious reader to
discover them.

Different tip-loss factors In this study, a review of all the existing tip-loss correction,s to the
author’s knowledge, was performed. By using a general formalism for the parameters of the far
wake, the theories of Betz, Goldstein and Prandtl were generalized. From these derivations, it
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was possible to unify all the different tip-loss factors than authors usually refer to as “Prandtl”
tip-loss factor even-though they use a different formulation than the one from the original author.
Hopefully, more clarity on the matter should follow from this analysis. On top of the existence of
many tip-loss factor equations, different definitions, interpretations and implementations are found
in BEM codes. This study clearly made the distinction between the standard tip-loss factor and
the so called “performance” tip-loss factor which stand in the line of airfoil coefficients corrections.

Standard tip-loss factor The standard tip-loss factor can be defined as a ratio of circulation,
like in the original articles of Prandtl and Goldstein, or as a ratio of induced velocities. The later
case deserve particular attention. The factor can describe in which proportion the axial induction
on the blade is different than the average azimuthal axial induction. In this case though, it should
be noted that for a real flow the average azimuthal axial induction goes continuously towards zero
in the vicinity of the tip. The axial induction on the blade can take a wide range of values towards
the tip due to the formation of the tip-vortex so that the ratio can be hard to define at the very
tip of the blade (last 1%). The advantage of this definition of the tip-loss factor, is that is gives a
good definition of the angle of attack and thus a better estimate of the loads on the blade using
the blade element theory. When used in BEM codes a different definition of the tip-loss factor in
terms of induced velocities is found. BEM codes are based on momentum theory which models
the rotor with an infinite number of blades and hence no tip-losses are present. In that case the
tip-loss factor has conceptually the role of reducing the axial induction from momentum theory to
ensure is goes towards zero in the vicinity of the tip. In this sense the tip-loss factor would be the
ratio of the real azimuthally averaged axial induction to the momentum theory axial induction.
In most BEM code implementations though, the tip-loss factor is applied as a momentum (and
sometimes mass flow) change. The tip-loss factor then reduces the loads at the tip. In most BEM
equations, the distinction between the average axial induction and the induction on the blade is
not done. The introduction of the tip-loss factor in the equations has thus the effect of increasing
the axial induction locally to the blade. As a result of this, the velocity triangle is correct as in
the previous formulation of the tip-loss factor described. The author believe that BEM equations
should be rewritten by carefully making the difference between the axial induction on the blade
and the azimuthally averaged axial induction. This is done for instance by Shen[98]. Also, the
momentum theory equations should be derived in two steps. The first step consisting in deriving
the equations for infinite number of blades. The second step should emphasize the assumption of
independence of the different annuli, and hence justify that the axial induction(which is azimuthally
averaged by definition), can be changed in each annuli to ensure that it goes towards zero in the
vicinity of the tip and hence account for finite number of blades. This should clarify the distinction
between â, a, and aB made in this report.

Zero at the tip From the above discussion and the analysis of this report, the question of the tip-
loss factor going to zero at the tip was mentioned. Depending on the meaning of the tip-loss factor
different conclusions can be drawn. Clearly, the author believes that the average axial induction
goes towards zero in the vicinity of the tip. Nevertheless, this is most likely to happen after the
tip accounting for the shear stress at the slip stream boundaries. This is observed from CFD data
as well. For this reason, forcing the tip-loss factor to go to zero at the tip might be inappropriate.
Also, the flow at the tip is very complex close to the blade. Changes in flow direction might even
happen in some situations. Hence if the definition F = a/aB is used then the values at the tip is
hard to define and is hence not likely to be exactly zero. If on the other hand, the tip-loss is seen
as a circulation factor. Then, one can argue that even-though the velocity is none-zero from the
above discussion, the loads are likely to be reduced to zero due to the pressure balance occurring
at the tip.
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Performance tip-loss factor The definition of this performance tip-loss factor and its imple-
mentation does not rise as many questions, even though controversy has followed the introduction
of Shen’s tip-loss factors. This performance tip-loss factor can translate two things. First it can be
seen as the results of the pressure equalization at the tip, which should make the loads go to zero
at the very tip. Also, it can model the fact that the airfoil does not perform as in 2D in the tip area
due to the presence of the tip-vortex and complex flows occurring. Reasons for this are multiple:
radial flow, interaction of the tip-vortex with the boundary layer, separation at the very tip and
centrifugal forces, etc. This difference in performance is independent to the other tip-loss factor
which affects the relative velocity both in amplitude and in direction. Even if the relative velocity
is known perfectly, the 2D airfoil data (in the situations observed) do not apply at the very tip.
The performance tip-loss factor is hence defined as the ratio between 3D to 2D airfoil polars. The
implementation of such correction is straight-forward in BEM codes. The question that remains is
the determination of such factor. Experimental data and CFD data can be used but at this time
the imprecision in both methods are quite high at the tip of the blade so no conclusion or persistent
model can be derived yet.

Tip-losses and CFD data As mentioned in the previous paragraph, the study of the perfor-
mance tip-loss factor can be done using CFD data. An attempt to derive a model for BEM codes
from the available data was done in this study. Nevertheless, imprecisions in CFD and 2D airfoil
data leaves the discussion open on the matter. On a different perspective, CFD data was used to
analysed tip-losses in terms of axial induction. Interesting results where obtained which matched
well the results from the vortex code. This study pointed out the importance of choosing planes
as close as possible as the rotor plane in order to assess the tip-loss factor. The definition of the
axial induction on the blade was discussed. This definition is difficult due to the spatial extent
of the blade and the strong flow fluctuations due to the bound circulation around the blade. Dif-
ferent methods were investigated in this report to assess the axial induction on the blade using
CFD data. The method of circular sector with different central angle is preferred by the author
for it performs a more physical comparison. On the other hand, only small differences between
the methods were found for studying the tip-loss factor only the very tip showed great deviations
between the methods.

A new method to investigate tip-losses using a vortex code In this study, a new method
was derived to analyse tip-losses using a vortex code. The idea behind this method is that an
unsteady free wake vortex code accounts for finite number of blades, wake expansion and wake
roll-up. Due to the simple lifting line formulation, the definition of axial induction on the blade
and at the rotor plane is made easy, and so is the derivation of the tip-loss factor. To perform a
wide range of characteristic analysis, simulations for different tip-speed ratio, thrust coefficients and
different family of circulation curves were run. The derivation of the family of circulation curves
was done using Bézier curves. The parametrization method derived in this study can be used to
characterize typical circulation curve, chord or lift distributions. The author encourages the uses
of this method for such applications due to the wide range of curves that can be obtained for only
a few parameters. Results from the different vortex code simulations were stored in a database for
later use in a BEM code.

Improved BEM code A new BEM code was implemented using the new tip-loss factors derived
by the vortex code. The performances of this new BEM code were compared with the one from
the vortex code and from a classical BEM code that uses Glauert tip-loss factor. The new BEM
code produces results really similar to the vortex code, and quite different at the tip than Glauert’s
BEM code. It is recalled here that the theory of Prandtl is really simplified and moreover does not
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account for wake expansion and wake roll-up. The vortex code accounts for this, and the fact that
the new BEM code reproduces fairly well the results from the vortex code shows that the goal of
improving the physical model of the BEM code has been reached. The computational time for the
new BEM code is slightly increased, but still small compared to a vortex code or CFD simulation.
From its small computational time the new BEM code can be used as a design tools for new blade,
and performance prediction of wind turbine.

Further From the discussions above, it has been seen how difficult the definition of tip-losses was,
and how sensitive the implementation of the tip-losses in a BEM code could be. This study intended
to give an overview of the existing work on tip-losses and to clarify and distinguish them. Further
work is required for the development of BEM equations which clearly distinguish the different
axial induction factor introduced in this report. Using either a vortex code, CFD, or experimental
data, the link between far-wake and rotor parameters has to be studied in order for the theory of
Goldstein to be used more precisely. The use of a vortex code to investigate tip-losses was shown in
this study, and the way it could improve BEM code was demonstrated. Methodology similar to the
one employed can be derived for further improvements. It is also believed that improvement in the
development of vortex code can lead to better results in the determination of the tip-loss factor.
The investigation of tangential induction factor is also to be considered. Indeed, one can ponder the
validity of using a same correction factor for the axial and tangential induction. Discussions from
the definition of tip-loss and their implementation will follow this study, making it a challenging
but exciting topic.
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Appendix A
Goldstein’s factor - Derivation and
computation

A.1 Short guide to follow Goldstein’s article

Below, a short guide to the reading of Goldstein article is presented and two typographic errors are
put to light. The notations from the article will be adopted but other variables will be introduced
to make some algebra more simple and hopefully clear.

Paragraph §2 The boundary conditions states that the motion imparted to the air is normal to
the vortex sheets. In other words, there should be no air passing through the vortex sheet which is
assumed to be impermeable. From Betz result, the vortex system is as if the helix was translating
at a velocity w, but in reality each section of the helix has a velocity component perpendicular to
its section. This is a propriety of helix discusses in Sect. 1.1.5 and illustrated onFig. 1.13. The
total contribution of the induced velocities generated by the wake should thus correspond to the
velocity of each helix section to satisfy the impermeability condition. Figure A.1 illustrates this
condition and hence equation (2) and (3).

w

w cos ε

uiz,w = w cos2 ε

uiθ,w = w cos ε sin ε

ε

(a)

uiz,w

uiθ,w

uiz,wcos ε

uiθ,w sin ε

w cos ε

ε

(b)

Figure A.1: Induced velocity in the far wake. (a) Induced velocities as function of the wake velocity w - (b)
Projections of velocities on the normal
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Equation (5) is quickly derived with:
∂φ

∂z
= ∂φ

∂ζ

−ω
v

(A.1)

∂φ

∂θ
= ∂φ

∂ζ
(A.2)

Letting the ratio wv/ω equal to 1 is not an assumption, it’s just a way to take advantage of linearity.
This can be formalized by letting k = wv/ω, and φ̃ = φ/k, then by linearity both φ and φ̃ satisfy
Laplace equation, but φ satisfies the BC from equation (5) whereas φ̃ satisfies equation (7). Once
the solution for φ̃ is found in §3.5, then the solution is simply multiplied by k to obtain the solution
for φ. That’s what Goldstein does but of course dropping the tilde notation. Equation (7) and (8)
are easily derived with:

∇2 = ∂2

∂r2 + 1
r

(
∂

∂r
+ 1
r

∂2

∂θ2

)
+ ∂2

∂z2 (A.3)

∂φ

∂r
= ω

v

∂φ

∂µ
(A.4)

∂

∂r
= ω

v

∂

∂µ
(A.5)(

µ
∂

∂µ

)2
φ = µ2∂

2φ

∂µ2 + µ
∂φ

∂µ
(A.6)

Equation (8) is called the homogeneous modified Bessel differential equations and admits for so-
lution the modified Bessel function In(µ) and Kn(µ) (see for instance [2, p 374] or [83, chap.
10]).

Paragraph §3.1 The form of equation (3) is suggested by the boundary condition. Inserting
equation (3) in §2 (8) leads to equation (4), and inserting (3) in the boundary condition leads to
equation (5). Now the problem reduces to solving equation (4) with the boundary condition (5).

Equation (6) is simply the Fourier series of the function f(ζ) = ζ on [0 ; π] (or the Fourier decom-
position of |ζ| on [−π ; π]). This decomposition will be used for the right-hand side of equation
(4). The idea is then to use a decomposition of the same nature for φ1 to allow an identification
term by term between the left hand side and the right hand side, hence the assumption of equation
(7). Equation (8) and (9) are purely the result of this identification term by term.

Equation (8) can be directly solved: noting H the operator (µdµdµ)2, and g0 = π/2µ2/(1 + µ2) then
equation (8) is just H(f0) = H(g0), which means that f0 = g0 + k where k is a function verifying
H(k) = 0. This writes µ2k′′+µk′ = 0, which can be integrated twice to find that k = A ln(µ) +B.
The term in log has to disappear for finiteness at µ = 0, and the term B is just a constant which
is of no interest when dealing with potentials because they are defined relatively. We found that
f0 = g0 which is equation (10).

Going from (9) to (12) is quickly derived using the above notation and some dummy variables A,
B, g: Equation (11) is written fm = B(g − gm), (9) written H(fm)− Afm = H(Bg), in which we
can insert the above expression of fm to get after simplification –H(−BGm)−ABg0−ABgm = 0,
simplify by B and get equation (12).

The solving of equation (12) involves some mathematical formalism which will be briefly presented
here for clarity and to have a broader perspective of the context. The inhomogeneous Bessel
equation of the function y(z) writes:(

z
d

dz

)2
y + (z2 − ν2)y = kzµ̃+1 (A.7)
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where z can be complex and k, µ̃, ν are constants. The solution for this equation depends on the
parity of the terms ν + µ̃ and ν − µ̃. When none of these terms is an odd negative number(-1,-3,
etc.), the solution is in the form:

y = sµ̃,ν(z) +AJν(z) +BYν(z) (A.8)

with A, B are arbitrary constants, J and Y the Bessel functions of the first and second kind and
sµ̃,ν is the Lommel function defined as:

sµ̃,ν = zµ̃+1
∞∑
m=0

(−1)m z2m

m+1∏
j=1

(
(µ̃+ 2j − 1)2 − ν2

) (A.9)

A more general solution which does not depend on the value of µ̃± ν is given by:

Sµ̃,ν = sµ̃,ν + 2µ̃−1Γ
(
µ̃− ν + 1

2

)
Γ
(
µ̃+ ν + 1

2

)
×
[
sin
(
π
µ̃− ν

2

)
Jν(z)− cos

(
π
µ̃− ν

2

)
Yν(z)

]
(A.10)

The above equation is the one referred by Goldstein as “Watson’s Bessel Functions §10.71 (3)”.
The exact title of this reference from Watson and the document itself has been retrieved for this
study of Goldstein’s article, the document is the following[116]. Other great references on the topic
are found to be [77] and [71].

Now it can be seen that Eq. (A.7) corresponds to equation (12) by using z = i(2m + 1)µ, k = 1
and ν = (2m + 1). To avoid manipulating complex numbers, Goldstein evaluates Eq. (A.10) as
the following S1,ν(iz) which leads to equations (13) and (14). A typo-error is found in the first
term of equation (14), which is obviously 22 instead of 2. To go exactly to equation (13) several
manipulation are needed by using the relations between the Bessel functions and the modified
Bessel functions.

Lommel’s functions comes into the formalism of Hypergeometric functions which are usefully writ-
ten with the Pochhammer symbol. The Pochhammer notation (a)k of a number a is:

(a)k = a(a+ 1)(a+ 2)..(a+ k) (A.11)

The hypergeometric function pFq:

pFq ((a), (b), z) =
∞∑
k=0

a1..ap
(b1)k..(b)k

zk

k! (A.12)

In terms of hypergeometric function then t1,ν writes:

t1,ν = −z2

ν2 − 22 1F2
(
(1), (2− ν/2, 2 + ν/2), z2/4

)
(A.13)

The hypergeometric functions are better known than Lommel’s function, and it is known that
when p ≤ q the hypergeometric functions have an infinite radius of convergence, which justifies the
expression of t1,2m+1 ((2m+ 1)µ)) for all the values of µ andm. The computation of the T functions
is not straight-forward even for modern computers and the asymptotic expression mentioned by
Goldstein should be used for high values of z (i.e. high values of the product (2m+ 1)µ).

The rest of the paragraph does not present any difficulty.
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Paragraph §3.2 In equation (2) Goldstein assumes another form of solution for equation §3.1
(12). There is no obvious reason for it to be exactly the same solution than the one found in the
previous paragraph. We will write this series:

X =
∞∑
k=0

τ2k
Z2k (A.14)

where Z = 2m+ 1. Introducing this series in equation(12) yields to
∞∑
k=0

1
Z2k

1
1 + µ2H(τ2k)−

∞∑
k=1

τ2k − τ0 = −µ2

1 + µ2 (A.15)

And after some rearrangements on the indexes:
∞∑
k=1

1
Z2k

[ 1
1 + µ2H(τ2k−2)− τ2k

]
− τ0 = −µ2

1 + µ2 (A.16)

By identifying term by terms the coefficient of 1/Z between the left hand side and the right hand
side, it yields to equation (4) and (5). The recurrence equation (4) come in handy to calculate the
successive τi manually. The question is whether the function denoted X above is really T1,(2m+1).
Goldstein justifies it by looking at the numerical values. Further is finds that these functions are
close to µ2

1+µ2 hence the introduction of F which is expected to go to zero and thus will simplify
manual computations and allow further approximation in next paragraphs.

In this paragraph Goldstein introduces two function F and G to conveniently highlight the function
µ2/(1 + µ2) and reveal terms that goes to zero. In practice, the definition of these functions is not
required. In equation (9) Goldstein uses:

∞∑
m=0

1
(2m+ 1)2 = π2

8 (A.17)

which can be found from equation §3.1 (6) expressed at ζ = 0.

Paragraph §3.3 Equation (1) is the Fourier decomposition of the function cos ((2m+ 1)ζ) on
[0 ; π]. To go between the two equal signs of equation (5), the following result has been used:

∞∑
m=0

1
(2m+ 1)2 [4n2 − (2m+ 1)2] = 1

4n2

∞∑
m=0

[ 1
(2m+ 1)2 + 1

4n2 − (2m+ 1)2

]
(A.18)

= 1
4n2

[
π2

8 −
π tan(πn)

8n

]
= π2

32n2 (A.19)

The coefficients am are determined for the approximate equation first and then a term εm is added
to account for the error. The terms are evaluated numerically only. For the case of any number of
blades, Goldstein neglects completely these error terms.

Paragraph §3.4 To obtain equation (2) one should recall our previous discussion on φ and φ̃,
notation which isn’t used by Goldstein of course. No further difficulties in the different calculations.

Paragraph §5 It should be noted that the definitions for the thrust and torque coefficients are
different than the one commonly used in wind energy(differ from a factor 2). A typo-error is found
in equation (8) which should be corrected as:

dT

dr
= pρΓ(rω + 1

2uθ) (A.20)
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Computation Even with recent computer the computation of Goldstein’s factor is tedious and
require some care. Without the help of modern computers, the calculation of Bessel’s function for
arguments above 50 was difficult and asymptotic approximation of these function had to be used.
Recommendations from [109] can still be used for an easier implementation because numerical
instabilities can occur, the convergence can be slow, some formulae are indeed more suitable than
others and indeed asymptotic expansion should be used. Also, the summations can’t be numerically
performed to infinity so a trade off has to be found. The Euler-Maclaurin formula can be used for
great values of m, when the T functions are close to 1. The computation of the coefficients am also
requires some attention. The use of a software that does formal algebra greatly simplifies the task.
In this study the software Mathematica[71] was used for the calculations.
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A.2 Computation of Goldstein’s factor using helical vortex solu-
tion

The optimal circulation found by Goldstein can be obtained by modelling the wake as a super-
position of helical vortex lines. If h = 2πl is the dimensional pitch of an helical vortex, then the
induced velocities for a helical vortex line of unitary circulation has been approximated by Okulov
as:

Vf =


0− l

r
A

[
B · Sl

(
r

l
,
a

l
, θ

)
+ Sm

(
r

l
,
a

l
, θ

)]
r < a

l

r
− l

r
A

[
B · Sl

(
a

l
,
r

l
, θ

)
− Sm

(
a

l
,
r

l
, θ

)]
r ≥ a

Vz = 1
2πl


1 + A

[
B · Sl

(
r

l
,
a

l
, θ

)
+ Sm

(
r

l
,
a

l
, θ

)]
r < a

0 + A

[
B · Sl

(
a

l
,
r

l
, θ

)
− Sm

(
a

l
,
r

l
, θ

)]
r ≥ a

Vθ = 1
2πl

l

r
(1−Vz (r, a, l, θ))

Vx = −r
l
2πlVz (r, a, l, θ) + Vf (r, a, l, θ)

with

A =
(
a2 + l2

) 1
4

(r2 + l2)
1
4

B = l

24

(
3r2 − 2l2

(r2 + l2)
3
2

+ 9a2 + 2l2

(a2 + l2)
3
2

)

Sl(x, y, θ) = Re

− log

1− e
iθ+log

(
x(1+

√
1+y2)

y(1+
√

1+x2)

)
+
√

1+x2−
√

1+y2



Sm(x, y, θ) = Re

 eiθ

e
−
[

log
(
x(1+

√
1+y2)

y(1+
√

1+x2)

)
+
√

1+x2−
√

1+y2

]
− eiθ


The vortex sheet is modelled by a superposition of helical vortex curves of intensity γv,j to be
determined using the boundary conditions as follow. Assuming N vortices at radial positions rj ,
and N − 1 control points located at radial positions ri(for instance taken in between the vortex
position), the velocity at the control point ri, sum of the velocity contribution from all vortices is:

u(ri) =
N∑
j=1
uj(ri) =

N∑
j=1

γv,jaj(ri) (A.21)

The above equation can be decomposed on the three components x, θ, z.

The control points are taken to be on the vortex sheet so that they should verify the boundary
conditions on this sheet, which is that the velocity reduction is maximum on the vortex sheet.
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These boundary conditions (derived in Eq. (2.8) and Eq. (2.7)) are found for uθ and uz and can be
derived for the ux component. They write for each point located at radius r on the vortex sheet:

uθ,0 = w
−rl

l
2 + r2

(A.22)

uz,0 = w
r2

l
2 + r2

(A.23)

ux,0 = wr (A.24)

with l = l/R and r = r/R. Writing the boundary conditions at the control points ri and combining
these with the three component of equation Eq. (A.21) leads to a set of three linear system of
equations of size (N−1)×N which unknowns are the N vortex intensities γv,j . These three system
equations are written in matrix form:

Aθ · Γv = Uθ,0 (A.25)
Az · Γv = Uz,0 (A.26)
Ax · Γv = Ux,0 (A.27)

The matrices of velocity influence A∗ have dimension N − 1×N , the vector of vortex intensity Γv
is N × 1 and the vectors of boundary conditions U∗ are N − 1× 1. Let us now assume a vector Γv
(a set of N − 1 γv,j) solution of Eq. (A.21). Inserting the solution Γv into Eq. (A.25) it is found
that it is also a solution for ux if the sum of all the helical vortices circulation is equal to zero, i.e.:

N∑
j=1

γj = 0 (A.28)

This condition is simply added to the A∗ matrix and the U∗ vectors in order to close the system,
and make the problem entirely solvable by inversion of the newly formed N × N matrices. Any
of the three system will give a satisfactory solution for Γv so only one system has to be solved.
Eventually, the total circulation, or Goldstein’s circulation at a radial position r, is the integral
of the tangential induced velocity on a circle of perimeter 2πr, or more simply, is the sum of the
intensity of the helical vortices contained in this circle:

Γ(r) =
∮
C(r)

uθ · dl =
∑

j/ rj<r

γv,j (A.29)

Results from this calculation have been compared with the results of Tibery and Wrench[109] by
Okulov[79] and showed perfect agreement. This simulation was reproduced here and showed perfect
agreement as well as seen on Fig. A.2. The circulation has also been calculated for other values of
h than the one used by Okulov, and are shown on Fig. 2.14 for reference.

A.3 Computation of optimum power with finite number of blades

In vortex theory, the application of the Kutta-Joukowski leads to the calculation of local loads as
function of the relative velocity and the circulation. By decomposing the loads on the normal and
tangential component, the total power and thrust can be derived as:

P = ΩρB
∫ R

0
Γ (U0 − uiz) rdr (A.30)

T = ρB

∫ R

0
Γ (Ωr + uiθ) dr (A.31)
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Figure A.2: Goldstein’s circulation function compared to the one from Glauert. (a) l = 1/1 - (b) l = 1/4.
The computation of Goldstein’s factor is performed using the superposition of helical vortex. In this case
150 vortices per blade were used. The thick line represent Glauert’s circulation. Goldstein’s circulation is
computed for B = 2(dotted), B = 3(dashed) and B = 4(thin). Dots are tabulated data from Tibery and
Wrench

Using the notations introduced in chapter 2, and the link between rotor parameters and wake pa-
rameters, Okulov et al.[80] integrated the power coefficient and thrust coefficient using Goldstein’s
optimal circulation calculated with the method of the previous paragraph. This yields the optimum
coefficients for a rotor with finite number of blades. This computation has been performed here as
well as a confirmation and the results are displayed on Fig. A.3.

λ [.]

C
P

[.
]

 

 
   

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

B=1
B=3
B=5
B=100
Momentum theory
Betz

(a)
λ [.]

C
T
[.
]

 

 
   

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

B=1
B=3
B=5
B=100
Momentum theory
Betz

(b)

Figure A.3: Optimum power and thrust coefficient. (a) Power coefficient - (b) Thrust coefficient.

A.4 Fitting functions for fast Goldstein’s circulation computation

For engineering applications, or if the methods mentionned above seem to complex or too slow
to implement, an explicit parametrization is suggested. Given the shape and values taken by the
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Goldstein circulation function, the following form is assumed:

GGo = BΓGo
hw

= sin
[
Pn

(
r

R

)]
(A.32)

where Pn is a polynomial of nth degree written as:

P (X) =
n∑
k=0

akX
k (A.33)

The values of the coefficients ak that fits the Goldstein’s circulation for different values of l and for
a degree of n = 8 can be found in Tab. A.1 and Tab. A.2. If the relation λ = 1/l is assumed, then
this function can be directly used to derive a tip-loss factor as explained in Sect. 3.4.1. The value
w = 1 is used to recall the linearity in w of the boundary condition, and thus of the solution ΓGo
found in Eq. (A.23). The ratio ΓGo/w is independent of w.

Table A.1: Goldstein’s circulation function fitted according to Eq.(A.32) for different values of l, with w = 1
and for B = 2

l 1/16 1/14 1/12 1/10 1/8 1/6 1/4 1/2
a0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0
a1 13.7 12.1 10.3 8.5 6.7 5.0 3.2 1.3
a2 -90.1 -74.2 -58.5 -43.6 -30.8 -21.2 -14.5 -7.4
a3 446.7 369.3 293.4 223.5 166.8 128.8 102.2 57.3
a4 -1469.9 -1245.1 -1021.6 -813.1 -643.2 -527.9 -431.3 -238.8
a5 2978.1 2581.8 2178.3 1790.6 1462.9 1224.1 994.8 541.5
a6 -3533.1 -3119.3 -2688.3 -2260.9 -1883.2 -1585.0 -1273.3 -684.8
a7 2242.1 2006.5 1756.7 1502.2 1267.6 1068.8 849.4 453.3
a8 -587.5 -530.9 -470.3 -407.1 -346.8 -292.6 -230.5 -122.4

Table A.2: Goldstein’s circulation function fitted according to Eq.(A.32) for different values of l, with w = 1
and for B = 3

l 1/16 1/14 1/12 1/10 1/8 1/6 1/4 1/2
a0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0
a1 13.3 11.4 9.5 7.6 5.6 3.8 2.3 0.9
a2 -75.8 -57.7 -41.3 -26.9 -15.1 -7.1 -4.3 -3.8
a3 339.5 254.2 184.4 129.9 90.1 68.1 65.1 51.0
a4 -1096.5 -859.1 -680.2 -551.2 -459.0 -400.5 -367.8 -249.7
a5 2277.3 1867.4 1577.5 1379.5 1230.7 1102.8 965.5 608.7
a6 -2809.3 -2377.0 -2084.3 -1891.7 -1736.0 -1564.7 -1328.5 -802.8
a7 1861.6 1606.0 1436.6 1327.1 1233.1 1112.7 927.0 546.3
a8 -509.9 -445.0 -402.1 -374.2 -349.4 -315.0 -259.2 -150.4
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Appendix B
Implementation and validation of a vortex code

B.1 Implementation of a vortex code

Description

The vortex code will not be described in detail in this document. For the implementation of the
code and a general descriptions of vortex codes(panel codes, vortex lattice codes,etc.) the following
references were used:[52], [8]. For references on lifting line code implementations the reader can refer
to the following references:[37],[32],[99],[54][72],[82], [24],[93]. Part of the source code of the vortex
code implemented is available in Appendix F. Only the core function on which the vortex code
is based is given. This function correspond to the induced velocity created by a vortex segment.
Given a vortex line delimited by the points x1 and x2, the velocity induced by this filament at a
point xp is given by:

Ui = Γ
4πr0 ·

(
r1
r1
− r2
r2

)
r1 × r2
‖r1 × r2‖2

(B.1)

= Γ
4π

(r1 + r2)
r1r2(r1r2 + r1 · r2)r1 × r2 (B.2)

with

r1 = xp − x1 (B.3)
r2 = xp − x2 (B.4)
r0 = x2 − x1 = r1 − r2 (B.5)

and where the relation ‖r1 × r2‖2 = (r1r2)2 − (r1 · r2)2 has been used.

The different vortex code implemented

Core computational methods The core computational methods were implemented in C (see
Appendix F for source code fragments). In a later stage of the study, this code has been used as a
benchmark for GPU code implementation. Three main functions are implemented:

- Line-by-Line function: computes the induced velocities of a series of vortex segments arbi-
trarily distributed in space on a series of given control points.

- Lattice function: computes the total induced velocities of a vortex lattice (grid) on a series
of given control points
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- Lattice Ring-By-Ring function: same as the above but returns the influence of each ring on
each control points instead of the total contribution of the whole lattice.

Wake model The wake can be set free or prescribed. The wake can be shed progressively at
each time step behind the rotor, or prescribed since the beginning of the simulation. A far wake
model consisting of a series of single root-tip rings associated to form an helix of a given pitch can
be added behind the free wake. This gives a better estimates of the induced velocities. The pitch
of the far wake is determined at each time step depending on the axial induced velocity in the far
wake. The number of helix rotations of the far wake is prescribed by the user.

Blade/wing representation The blade or the wing can be represented by a lattice of vortex
rings forming a grid of any dimensions nchord × nspan. In its simpliest form the code can reduce to
a lifting line formulation with the wing represented by a lattice of dimension 2× nspan.

Circulation at the blade The way the circulation can be handled depends on the blade/wing
representation.

- Prescribed circulation: always possible(blade lattice or lifting line).
- Solved circulation using non-penetration condition: always possible.
- Solved circulation using 2D data: only possible in the lifting line case1

Vortex viscous model

To resolve the singularity occurring when a calculation point is close to the vortex line, different
corrections are commonly employed. A viscous core radius rc is used to define the radial location
for which the tangential velocity induced by the vortex is maximum. Several methods reduces to
a multiplicative factor Kv directly applied to the induced velocity Ui from Eq. (B.2) to eliminate
the singularity. These methods are for instance described in [60] and their expressions are:

Rankine Kv = max
{

1 , r2/r2
c

}
(B.6)

Lamb-Oseen Kv = 1− exp
(
−αr2/r2

c

)
α = 1.25643 (B.7)

Vatistas - n Kv = r2/r2
c(

1 + (r/rc)2n
) 1
n

(B.8)

Vatistas - n=2 Kv = r2√
r4
c + r4 (B.9)

The model of Vatistas for n = 2 has been detailed as it is a fairly good approximation of the
analytical but simplified result from Lamb-Oseen. In the above, the radial distance r is replaced
by the orthogonal distance related to a vortex filament: h = ‖r1 × r2‖/r0. A common model for
the vortex core radius computation is the one from Squire 1965[105][60, p 592] which writes in the
form:

rc(t) =
√

4αδν(t− t0) (B.10)

where α is the viscous core growth constant from the Lamb-Oseen model, δ is the viscous core
diffusivity coefficient (or effective turbulent viscosity coefficient) and ν is the kinematic viscosity.

1Methods to extend to vortex lattice are possible using the spanwise distribution of circulation of a flat plate for
instance, see e.g. [82]. No time was allowed for this implementation.

E. Branlard 134



APPENDIX B. IMPLEMENTATION AND VALIDATION OF A VORTEX CODE

The time parameters model the growth of the vortex as the wake ages, and allows the vortex to be
already in a stage of decay immediately after it’s formation. This model showed good agreement
when compared to measurement[60, p 592].

Another way of removing the singularity is to use a cut-off radius that is artificially inserted in the
denominator of Eq. (B.2) to prevent it to go to zero:

Ui = Γ
4π

(r1 + r2)
r1r2(r1r2 + r1 · r2) + (δc r0)2r1 × r2 (B.11)

with r0 being the length of the vortex filament. Suggested values of cut-off radius parameters δc
found in [37] are of 1-10% for the wake roll-up computation and 0.01% for bound vortex calculations.
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B.2 Validation of Vortex code with prescribed wake

Flat plate

As a first validation step, the lift coefficient for a flat plate of infinite aspect ratio AR is computed
with the vortex lattice code. The simulation results seen on Fig. B.1a agree perfectly with the
Joukowski result Cl = 2π sinα which approximates to 2π at low angles of attack. The influence of
aspect ratio2 is then studied with results displayed on Fig. B.1b. Prandtl’s formula for an elliptic
finite wing is slightly modified by introducing a factor τ which is different of 0 for non elliptical
wing:

Clα =
Clα,0

1 +
Clα,0
πAR (1 + τ)

(B.12)

where Clα is the lift slope of a finite wing and Clα,0 the lift slope of the airfoil section, with in
general Clα < Clα,0 . A modification of this formula has been suggested by Helmbold in 1942[3] for
a better fit at lower aspect ratios:

Clα =
Clα,0√

1 +
(
Clα,0
πAR

)2
+

Clα,0
πAR

(B.13)

Tuck[111] derived an accurate method to assess the lift slope for an flat plate with a lifting surface
formulation. He fitted his results with the empirical relation of Koemiawan at high aspect ratio
providing the following relation:

Clα = 2π − π 1
AR (logAR + 2.5620) + 1.404 1

AR2 (logAR + 3.645) (B.14)

Values from the above formulation and experimental data are used for comparison with the simu-
lation results on Fig. B.1b. Perfect agreement is found with the semi-analytical result from Tuck
at high aspect ratio, and good agreement is found with the vortex lattice code from Jones 1960.
Differences between the lifting surface results and the lifting line results from Prandtl are expected
due to the difference in formulation(see for instance [111]).

Elliptical wing

Infinite aspect ratio The lifting line theory is easily verified for an the case of an elliptic wing
with infinite aspect ratio. Results for the case α = 5.7106◦, U0 = 1m/s and c0 = 1m is displayed
on Fig. B.2 where a perfect match with the theory is found.

Influence of aspect ratio Analytical derivation from Kida [53][111] provides the exact lift
coefficient Clα of an elliptical wing from the three-dimensional lifting surface theory. Kida uses
trigonometric series of Lamé polynomials for the analytical derivations and resulting numerical
tabulated values are provided as function of a geometrical parameter defined as k2 = (a2 − b2)/a2,
with a and b the two semi-axis of the ellipse. The notation b should not be mistaken in this context
with the full-span of a wing often noted with the same letter. In his table 3[53] Kida separates
values for aspect ratio higher and lower than the circular wing. Vortex code simulation of the
different wing corresponding to these different values of k2 and different aspect ratio have been
performed to be compared with the numerical values of Kida. Results are shown on Fig. B.3(a-b)
where perfect agreement is found.

2See Notations on page 3
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Figure B.1: Lift coefficient for a flat plate. (a) Wing of infinite aspect ratio for different angle of attack - (b)
Clα for a flat plate at different aspect ratio. The experimental and simulation data from Jones 1960 were
extracted from [52]. The empirical relation fitted by Tuck[111] derived for high aspect ratio is represented.
Current stands for the vortex code implemented in this study. For infinite aspect ratio, Clα converges exactly
to 2π as seen on (a).
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Figure B.2: Elliptical wing with infinite aspect ratio. (a) Lift coefficient - (b) Circulation
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Figure B.3: Lift coefficient of an elliptical wing for different aspect ratios. Figures (a) and (b) are two
different representations of identical results. Plain lines and blue symbols correspond to aspect ratios higher
than the circular wing in contrast to dashed lines and red symbols. The smaller semi-axis of the ellipse is
always taken as 1/2, hence an aspect ratio of 4/π for the circular wing.

Swept wing

In their book Bertin et al[8] detail an analytical solution of the vortex-lattice method applied to a
swept wing. The wing has a sweep angle of Λ = 45◦, an arbitrary span b, an aspect ratio of AR = 5
and is modelled by 8×1 panels. The vortex code applied with this geometry and number of panels
showed perfect agreement with the derivation of Bertin as seen on Fig. B.4a. The influence of
increasing the grid resolution and the influence of the wake roll-up is also displayed on this figure.
Simulation results show good agreement with the experimental results of Weber and Brebner from
1958 found in [8]. A modification of Eq. (B.13) has been suggested by Kuchemann[3] to compute
the lift slope of a swept wing as function of the sweep angle Λ. This empirical relation writes:

Clα =
Clα,0 cos Λ√

1 +
(
Clα,0 cos Λ

πAR

)2
+

Clα,0 cos Λ
πAR

(B.15)

On Fig. B.4b, this relation is confronted to the results from the vortex code. Good agreement is
found for low aspect ratio only. For higher aspect ratio, the current vortex code and the one from
Jones[52] separates from the empirical relation while staying close to the experimental results.

Goldstein’s circulation function

The values of Goldstein’s circulation function can be obtained by prescribing an helical wake struc-
ture of a given pitch with a sufficiently long extent to be an approximation of the infinite helical
wake studied by Goldstein(see Fig. B.6). The method used for the computation is similar to the
one described in Sect. A.2. Using the conservation of circulation along the wake, and writing the
boundary condition of normal velocity on the screw surface at collocation points located in the cen-
ter of the wake, the circulation is obtained. Results from such computations displayed on Fig. B.5
show great agreement with the computation of Goldstein’s analytical factor by Tibery and Wrench.
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Figure B.4: Lift coefficient of a swept wing for Λ = 45◦. (a) Swept wing with AR = 5. The vortex code is
in perfect agreement with the analytical derivation of Bertin for 8 panels. An increased number of panels
prove better agreement with the experiment of Weber and Brebner. The influence of wake roll up is limited.
- (b) Clα compared to the relation suggested by Kuchemann[3] and data from Jones 1960[52].
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Figure B.5: Golstein circulation function computed with vortex code for different values of l. Dots are values
computed by Tibery and Wrench[109], lines are computed with the current vortex code. Numerical values
on the plot refer to the value of l.
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Figure B.6: Illustration of the theoretical helical wake used for the computation of Goldstein’s function.
Depending on the wake pitch, the number of revolutions sufficient to assume the wake infinite will vary.
Control points located at the middle cross section of the wake are used to determine the boundary conditions
and solve for the circulation.
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B.3 Unsteady vortex code

Sudden acceleration of a flat plate

In this section, a comparison with results from Katz and Plotkin[52], chapter 13 is done. The
transient results are unfortunately quite dependent on the way the numerical time integration
scheme is done. The reproduction of results from Figure 13.34 of [52] is seen on Fig. B.7 with the
superposition of the results obtained with the current vortex code.
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Figure B.7: Transient lift coefficient variation with time for uncambered, rectangular wings that were sud-
denly set into a constant-speed forward flight. . The calculation is based on four chordwise and thirteen
spanwise panels and U0∆t/c = 1/16. results from Katz and Plotkin[52] are displayed in black, while the
results from the current vortex code are plotted in blue. Numbers on the figure represent the value of the
aspect ratio.

The reproduction of results from Figure 13.36 of [52] is seen on Fig. B.8 using the current vortex
code.
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Figure B.8: Separation of the transient drag coefficient for an sudden acceleration of a flat plate. The thin
curve going to zero represent the drag due to fluid acceleration, whereas the other thin curve is the drag due
to the induced downwash. The thick curve is the total drag. Results were obtained with the current vortex
code, comparing really well with the one from figure 13.36 of reference [52].
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Wagner function Wagner obtained a solution for the indicial lift on a thin-airfoil undergoing a
transient step change in angle of attack in 2D incompressible flow. In its simpliest form, the lift
coefficient follows the following variation with time:

Cl(t) = πc

2U0
δ(t) + 2παφ(s) (B.16)

with δ the Dirac function, φ the Wagner function and s = 2U0t/c. The analytical expression and
computation of the Wagner function being complex, it is often replaced by approximated functions.
In [60], two approximations are referenced. The one from Jones (1938) writes:

φ(s) ≈ 1.0− 0.165e−0.0455s − 0.335e−0.3s (B.17)

The approximation suggested by Garrick(1938) is:

φ(s) ≈ s+ 2
s+ 4 (B.18)

The results from the vortex code of a sudden acceleration of a flat plate of high aspect ratio is
displayed on Fig. B.9 and compared with the Wagner function.
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Figure B.9: Sudden acceleration of a flat plate - Comparison with Wagner function. The quasi-static Cl
is the lift coefficient without accounting for the fluid acceleration, whereas the unsteady Cl is the total lift
coefficient. The result shape is dependent on the time-integration scheme chosen explaining the differences
at early times. The vortex code nevertheless converges quickly towards the analytical solution.
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Validation against experiment and other vortex code

The experimental campaign described in[93] is used in this section. This rotor has been studied
extensively by Sant[93] who developed a free wake lifting line code for comparison with the hot
wire measurements. A similar vortex code developed by Kloosterman[54] has also been used for
comparison with the TU Delft measurements. The simplicity of the rotor’s geometry makes it an
easy task to model it, so that results from the current vortex code implementation will be compared
with the experimental data and the two vortex code results presented in the above references. The
description of rotor’s geometry can be found in both of these references. The operating condition
of the turbine is the same for all simulations, which is λ = 8, U0 = 5.5m/s, and θtip = 2◦. Sant
derived a circulation distribution which is prescribed to its vortex code and accordingly to the
current vortex code. This circulation is found on the Figure 4.55 of his thesis.

Only a few numerical and experimental results from Sant are selected in order to be compared
with the vortex code implemented in this study. The simulation is performed with the following
parameters: n = 21, ∆φ = 10◦, nrev = 3, nrev,far wake = 5 The longitudinal induced velocity at the
lifting line is presented on Fig. B.10. In this figure, the influence of the viscous core parameters
and the presence of the far wake model is shown. The same trends are found for the two vortex
codes, but small differences are present.
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Figure B.10: Comparison of vortex code results compared to experimental data - Induced velocity on the
lifting line. Lines marked with dots are data found in Sant 2007[93] using a similar vortex code.

The azimuthal variation of the axial induced velocity for two different radial positions and two
different planes downstream paralel to the rotor is found on Figs. B.11 and B.12
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Figure B.11: Azimuthal variation of axial induced velocity in the plane z = 0.35m behind the rotor. Exper-
imental data were taken from the work of Sant[93] together with the results from his vortex code.
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Figure B.12: Azimuthal variation of axial induced velocity in the plane z = 0.60m behind the rotor. Exper-
imental data were taken from the work of Sant[93] together with the results from his vortex code.
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On Figs. B.13, contour plots similar to the one found in [54] have been obtained with the current
vortex code and compared with the experimental results of Sant and vortex code results of Kloost-
erman, as reported in [54]. Good agreement is found between Kloosterman’s vortex code and the
one implemented in this study.
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Figure B.13: Comparison of longitudinal velocity in different plans behind the TUD rotor. Figures (a) and
(c) are taken from[54].
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The influence of the vortex core parameters on the wake shape has been studied in a similar fashion
than Sant. The results obtained are displayed on Fig. B.14 ad can be directly compared with Figure
5.30 from Sant[93]. Similar shapes are found, confirming a same implementation of the vortex core
model and a similar implementation of the vortex code. The values from the experimental tip
vortices locations used by Sant have also been used for this figure.
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(c) δ = 100, t0 = 1

Figure B.14: Influence of vortex core parameters on the wake shape. Dots represents the location of tip
vortices as measured and reported by Sant[93]

Similar simulations than the one performed by Gupta and Leishman[39, 60] have been performed
to study wake shapes and stream lines for different tip speed ratios. Wake deficit has also been
studied. Insufficient data were available to study the same rotor than Gupta and Leishman. As
a results of this, the case of an existing stall regulated turbine, the Nordtank NTK500 turbine[41]
has been used. Results are shown on Fig. B.15. The wake shapes and streamlines agree reasonably
well with the results from Gupta and Leishman.
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Figure B.15: Wake shapes(a), streamlines(b) and wake deficit(c) at different tip speed ratios for the NTK
500 turbine as modelled by the vortex code. Five revolutions of the wake have been computed. The last
vortex ring’s axial position has been used for representation of the wake shape. Due to the tip roll-up
this representation is only an approximation. Numerical discretization induces oscillation that can be seen
in the streamlines. The wake deficit is not computed correctly for high tip-speed ratio and large distance
downstream because the wake was not propagated enough downstream. Increasing values of tip-speed ratio
correspond to increasing values of the thrust coefficient. For λ = 10, CT ≈ 0.6, ad for λ = 15, CT ≈ 0.9, so
that the turbine is respectively in a turbulent wake state and close to the vortex ring state as confirmed by
the streamlines.
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NREL rotor In his thesis Sant[93] determines a converged bound circulation for different wind
speed for the NREL rotor[34]. Using these prescribed circulation, the current vortex code has been
run with the NREL rotor geometry for comparison with the results of Sant. The computation has
been performed for the wind speed of 5m/s with the same algorithm parameters than Sant. Results
are displayed on Fig. B.16
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Figure B.16: Induced velocity at the rotor plane for the NREL rotor at 5m/s. The intensity compare very
well with the ones found by Sant[93, p 302]
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Examples of meshing

To understand the difference between the panels location and the bound vortex rings location,
together with the location of the collocation points, an example of “meshing” for a blade is presented
on Fig. B.17.
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Figure B.17: Illustration of the meshing method with distinction between panels and vortex rings. the
blade geometry is a design from the author. The chordwise and spanwise meshing is done using a “cosine”
distribution for a better resolution close the blade extremities and close to the leading edge and trailing
edge. The case nchord = 1 corresponds to classic lifting line codes. It is used when the vortex code uses 2D
airfoil data to determine the circulation.
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Examples of circulation and lift distributions

In the following several examples of lift and circulation distributions obtained by the method of
“solving for non-penetration at the collocation points” are shown. The Lift distribution along the
span-wise and chord-wise direction for two different wings is illustrated on Fig. B.18.
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Figure B.18: Distribution of lift obtained with the vortex code - U = 10m/s - α = 5◦. (a) Flat plate - (b)
Elliptical wing

Another example of an elliptical wing with a different wing shape together with a trapezoidal wing
is considered on Fig. B.19. .
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Figure B.19: Different geometries studied with the vortex code. (a) Circulation distribution on an elliptical
wing with b = 5, c0 = 1, α = 5.7106◦, U0 = 1m/s - (b) Lift distribution on a trapezoidal wing with b = 5,
c0 = 1, U = 10m/s - α = 10◦
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Illustrations of wake shapes

Different wake shapes obtained with the implemented vortex code are presented. On Fig. B.20 the
wake shapes behind of an elliptical and trapezoidal wing is displayed.
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Figure B.20: Wake shapes behind an elliptical wing and a trapezoidal wing.
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Two examples of wake shapes behind a wind turbine cam be found on Fig. B.21.
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Figure B.21: Wake shapes behind a wind turbine. (a) Without winglet - (b) With winglet
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Appendix C
The BEM method

C.1 Introduction to the BEM method

The blade element momentum(BEM) method results in the combination of the momentum theory
and the blade element theory. Figure 1.18 illustrates the differences between these methods and how
they are combined to form the BEM theory. The momentum theory applied to a stripe provides the
corresponding elementary thrust and torque for a given set of both induction factors. This relation
between induction factors and loads is invertible. The velocity triangle from the momentum theory
also gives an expression of the flow angle as function of a and a′. On the other hand, the blade
element theory requires the airfoil characteristics, the angle of attack and the relative velocity to
calculate the forces of lift and drag applied to the blade element, and by projection the elementary
thrust and torque. For a given rotor geometry and a given wind condition, a physical solution will
be found if both methods returns the same loads for all the different stripes. In order to find this
solution, the methods are linked together to form a converging iterative process. The author likes
to emphasize two links, or linkage, to clearly distinguish the difference of the methods and how
they interact. The first linkage is obtained by comparing the velocity triangles of the two methods.
The second linkage consists in equalizing the loads obtained from both methods. It should be
noted that due to the hypothesis of independence of each stripe, the convergence loop and the loop
over the different stripes can be indifferently switched. Depending on this choice, the convergence
criteria can be implemented in several way. The choice of the variable on which the convergence
is tested is multiple as well, the most common choices being: the angle of attack, the induction
factor or, which is suggested here, the total Power. In practice the implementation of the BEM
algorithm is slightly different from the one shown on Fig. 1.18 because the succession of blocks can
be simplified mathematically. The final algorithm will be presented in Sect. C.1 after derivation of
the linkage equations and simplifications.

Note In the following the BEM algorithm as described by Glauert[35], or [42] is presented. No
pressure terms accounting for wake rotations are used. These authors don’t explicitly uses the
notations aB and â so that the same will be done here to avoid confusion. Controversy also appear
as soon as the tip-loss factor is applied. For instance the velocity triangle presented in the next
section is for some author local to the blade but on the other hand it is derived from 2D momentum
theory which has infinite number of blades. Discussion on BEM formalism are still open.

155



APPENDIX C. THE BEM METHOD

First link - the energy equation or velocity triangle

The momentum theory with wake rotation, or simplified 2D momentum theory, establishes the
following energy equation

λ2
ra
′(1 + a′) = a(1− a) (C.1)

which leads to1

∃ φ̃ ∈ R /
(1− a)

(1 + a′)λr
= a′λr

a
= tan φ̃ (C.2)

and hence, this relation can be interpreted as a velocity triangle. Clearly, this triangle defines the
flow angle, i.e. φ̃ = φ, and one can write:

φ = atan (1− a)U0
(1 + a′)Ωr = atan (1− a)

(1 + a′)λr
(C.3)

The second part of Eq. (C.2) is interpreted as the orthogonality of the induced velocity with the
relative velocity. Figure C.1 explicits the components of the relative velocity Un and Ut that were
used in the blade element theory(see Fig. 1.12), and this allows the expression of U2 that is used
in the definition of aerodynamic forces:

U2 = U2
0 (1− a)2 + Ω2r2(1 + a′)2 (C.4)

To reduce expressions it will more convenient though to use expressions of U2 that uses the flow
angle and the induction factors:

U2 sin2 φ = U2
0 (1− a)2 (C.5)

U2 cosφ sinφ = U0(1− a)Ωr(1 + a′) (C.6)

Rotor plane
Ut = Ωr(1 + a′)

Un = U0(1− a)U
φ

θ

α

φ L

D pt

pn pn = L cosφ + D sinφ

pt = L sinφ−D cosφ
Chord axis

Figure C.1: Velocity triangle illustrating the link between the simplified 2D momentum theory and the Blade
Element Theory

Second link - Elementary Thrust and Torque

The aim is here to relate the thrust and torque from the momentum theory to the in-plane and
out-of-plane loads from the blade element theory. It should be remembered that the loads in the
momentum theory are defined over an annular cross section*(infinite number of blades) of area
dA = 2πrdr whereas in the blade element theory the loads are defined for one blade element of
area dS = cdr. To link the two theories, it is thus assumed that if the rotor consists of B blades
then the total load from the B blade elements is the same that the one obtained by the momentum

1Given the fact that the domain of tan is R
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theory for an annular section*. The ratio of these two areas is expected to appear in the linkage,
it will be noted σ:

σ = Surface blade elements
Surface annular element = B dS

dA
= Bcdr

2πrdr [ - ] (C.7)

and eventually:

σ = Bc

2πr (C.8)

This ratio called solidity is illustrated on Fig. C.2. This solidity is local, i.e. depend on the radius.
It does not represent the total solidity of the blade.

Figure C.2: Illustration of the solidity

Blade Element theory formulation Using the blade element theory(BET) formalism, the
total thrust and torque exerted on B blade elements are :

dTBET = BdFn = 1
2ρU

2(Bcdr)Cn [N] (C.9)

dQBET = BrdFt = 1
2ρU

2(Bcdr)rCt [Nm] (C.10)

Momentum theory formulation

dTMT = 1
2ρU

2
0 (2πrdr) [4aF (1− a)] (C.11)

dQMT = 1
2ρU

2
0 (2πrdr)r

[
4a′F (1− a)λr

]
(C.12)

The linkage consists in equalizing the blade element thrust dTBET from equation Eq. (C.9) with
it’s momentum theory analog dTMT from Eq. (C.11), and doing the same for the blade element
torque by equalizing Eqs. (C.10) and (C.12):

1
2ρU

2(Bcdr)Cn = 1
2ρU

2
0 (2πrdr) [4aF (1− a)] (C.13)

1
2ρU

2(Bcdr)rCt = 1
2ρU

2
0 (2πrdr)r

[
4a′F (1− a)λr

]
(C.14)
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Introducing the linkage equations to simplify equations

In this section the linkage equations are written in different forms to allow analysis of certain terms
and comparison with other references. The equations are presented with or without the inclusion
of the drag coefficient in the axial induction.

Simplifications of the Blade Element theory equations using the first link Using the
first link, the loads from the BET can be written indifferently in the following forms2:

dTBET = ρBc

2
U2

0 (1− a)2

sin2 φ
Cndr = σπρ

U2
0 (1− a)2

sin2 φ
Cnrdr (C.15)

dQBET = ρBcr

2
U0(1− a)Ωr(1 + a′)

sinφ cosφ Ctdr = ρBcr

2
U2

0 (1− a)2

sin2 φ
Ctdr = σπρ

U2
0 (1− a)2

sin2 φ
Ctr

2dr

(C.16)

From now on, in this paragraph, the subscript BET is dropped, but it should be remembered that
no results from the momentum theory are used. The above relations can be expressed with respect
to a′ as used e.g. in [64]:

dT = σπρ
Ω2r2(1 + a′)2

cos2 φ
Cnrdr (C.17)

dQ = σπρ
Ω2r2(1 + a′)2

cos2 φ
Ctr

2dr (C.18)

The global thrust and torque coefficients defined with respect to the whole rotor area πR2 can be
written in a differential form(for comparison with e.g. [35]):

R
dCT
dr

= R
dT

dr

1
1
2ρU

2
0πR

2 = 2λ2σ

(
r

R

)3 (1 + a′)2

cos2 φ
Cn (C.19)

R
dCQ
dr

= R
dQ

dr

1
1
2ρU

2
0πR

3 = 2λ2σ

(
r

R

)4 (1 + a′)2

cos2 φ
Ct (C.20)

or

The local thrust and torque coefficients defined for each annular section of surface 2πrdr are found
to be:

CTr = dT
1
2ρU

2
0 2πrdr

= (1− a)2σ

sin2 φ
Cn (C.21)

CQr = dQ
1
2ρU

2
0 r2πrdr

= (1− a)2σ

sin2 φ
Ct (C.22)

or
CQr
CTr

= Cn
Ct

(C.23)

Simplifications using the two links Simplifying Eqs. (C.13) and (C.14) leads to:
a

1− a = 1
4F sin2 φ

cB

2πrCn = σ

4F sin2 φ
Cn (C.24)

a′

1 + a′
= 1

4F sinφ cosφ
cB

2πrCt = σ

4F sinφ cosφCt (C.25)

2There are indeed many variation possible due to the different relations between the parameters. These forms are
developed here for an easy comparison with literature
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or in a different form (for comparison with e.g. [64])

1
1− a = 1 + σ

4F
1

tan2 φ

Cn
cos2 φ

(C.26)

1
1 + a′

= 1− σ

4F
1

tan2 φ

Ct
cos2 φ

(C.27)

which solves to:

a = 1
4F sin2 φ

σCn
+ 1

(C.28)

a′ = 1
4F sinφ cosφ

σCt
− 1

(C.29)

Equations without drag In the calculation of induction factors, a and a′, it is argued by some
authors that Cd should be set equal to zero(see discussion in Sect. 1.3.4, and e.g.[117, 23]). With
Cl = 0, Eq. (C.24) and Eq. (C.25) reduces to

a

1− a = σ cosφ
4F sin2 φ

Cl (C.30)

a′

1 + a′
= σ

4F cosφCl (C.31)

Then Eq. (C.28) and Eq. (C.29) writes:

a = 1
4F sin2 φ

σCl cosφ + 1
(C.32)

a′ = 1
4F cosφ
σCl

− 1
(C.33)

Using the two above equations with the first linkage equation and after some algebra an expression
can be obtained for the lift coefficient:

Cl = 4 sinφ
σ

cosφ− λr sinφ
sinφ+ λr cosφ (C.34)

It can be noted that in the case where the drag is omitted, then then the ratio to the two loading
coefficients Eq. (C.23) reduces to a simple function of φ:

CQr
CTr

= tanφ (C.35)

Also, the ratio of Eq. (C.30) and (C.31) leads to:

tanφ = λra
′

a
(C.36)

which recalls equation Eq. (C.2). Hence when the drag is ignored, the energy equation is satisfied
and so is the condition of orthogonality between the induced velocity and the relative velocity.
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Note on other conventions Several conventions are found in the old literature for the thrust
and torque coefficients. For propellers, due to the large rotational speeds, the velocity taken as a
reference is ΩR. In propellers aerodynamics the advance ratio J = U0/nrotD plays the equivalent
role of the tip-speed ratio. The two are related with: J = π/λ. In[64] the thrust and torque
coefficients kT and kQ are defined as:

T = kT · ρn2
rotD

4 = kT · 4ρ
Ω2

π2R
4 ⇔ CT = kT ·

8
π3λ

2 (C.37)

Q = kQ · ρn2
rotD

5 = kQ · 8ρ
Ω2

π2R
5 ⇔ CQ = kQ ·

16
π3λ

2 (C.38)

P = kP · ρn3
rotD

5 = kP · 4ρ
Ω3

π3R
5 ⇔ CP = kp ·

8
π3λ

3 (C.39)

In [35], the thrust and torque coefficients are defined as:

T = Tc · ρπΩ2R4 ⇔ CT = Tc · 2λ2 (C.40)
Q = Qc · ρπΩ2R5 ⇔ CQ = Qc · 2λ2 (C.41)

Summary of BEM algorithm

Assumptions C.1:
(H C.1a) - The forces of the B blade elements are responsible for the change of momentum of the
air which passes through the annulus swept by the elements
(H C.1b) - No aerodynamic interaction between the flow stripes
(H C.1c) - Uniform circulation around the blades (a uniform)
(H C.1d) - Homogeneous, incompressible, steady state fluid flow
(H C.1e) - No frictional drag
(H C.1f) - Infinite number of blades
(H C.1g) - Uniform thrust over the rotor area
(H C.1h) - The static pressure far upstream and downstream is equal to the undisturbed ambient
static pressure

A justification on how (HC.1c) can be relaxed can be found in [70, p 63]. This relaxation is
primordial to justify the common use of the BEM method.

Dependency Using a and a′ as main parameters the following dependencies are observed between
the different variables of the BEM code:

Parameter at iteration n+ 1 = f(Parameters at iteration n)
φ = f(a, a′) (C.42)
α = f(φ) = f(a, a′) (C.43)
Cn = f(α, φ) = f(a, a′) (C.44)
Ct = f(α, φ) = f(a, a′) (C.45)
F = f(φ) = f(a, a′) (C.46)
a = f(F, φ,Cn) = f(a, a′) (C.47)
a′ = f(F, φ,Ct) = f(a, a′) (C.48)

All parameters, including a and a′ are dependent of a and a′, so that the BEM code is by nature
an iterative process
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The BEM process is the following for a given geometry and a given tip speed raio:

1. Initial guesses for a and a′

2. Calculation of the flow angle φ with Eq. (C.3).

3. Calculation of the angle of attack α from α = φ− β

4. Calculation of Cl and Cd from the data

5. Projection of the lift and drag coefficients:

Cn = Cl cosφ+ Cd sinφ (C.49)
Ct = Cl sinφ− Cd cosφ (C.50)

6. Calculation of new values of a and a′(Eq. (C.28) and (C.29)):

an+1 = 1
4F sin2 φ
σCn

+ 1

∣∣∣∣∣∣
n

(C.51)

7. Go back to step 2 till convergence of the algorithm

Reproducing the BEM process for different tip speed ratio will allow the plotting of Cp − λ or
Cp −WS curves characteristic for the studied rotor.

C.2 Common corrections to the BEM method

Discrete number of blades - tip losses

Correction for discrete number of blades are the topic of this document.

Correcting due to the momentum theory break down

The 1D momentum theory with wake rotation assumes no or small expansion of the wake, assump-
tion which fails for large values of the axial induction factor when the rotor is said to be in the
turbulent wake state. Moreover, looking at the equation Uw = U0(1 − 2a) from 1D momentum
theory, it is seen that the momentum theory breaks down for values of a above 0.5 because it would
give negative velocity in the far wake.Also, comparison with measurement shows that the BEM
code is not in agreement with real rotor flow when the axial induction factor a is over a critical
value ac usually taken around 0.4 which would correspond to a velocity at the rotor equal to 60%
the free stream velocity. When operating at high winds induction factors up to 1 are observed,
therefore an empirical relation should be found to correct the thrust from the momentum theory
for a > ac. These corrections are commonly expressed in terms of the local thrust coefficient but
they can obviously be written in term of elementary thrust dT as well. The link between the two
is recalled here to avoid any confusion between the local thrust coefficient CTr and the total thrust
coefficient CT :

CTr = dT
1
2ρU

2
0 2πrdr

(C.52)

Different corrections close are described below: Glauert’s and the Spera’s correction. It should be
noted that these corrections apply above a certain critical value ac. Below this value, the momentum
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theory is assumed to be valid, and Eq. (C.28) is used to compute the axial induction factor. For
the physical modelling of the problem, the correction will have to ensure continuity and continuity
of the derivative at this critical point. A graphical comparison of the different corrections is found
on Fig. C.3.

It should be kept in mind that these corrections are empirical relation. For most practical designs
the axial induction factor never exceeds 0.6 and for well-designed blade, it will be in the vicinity
of 0.33 for most of its operational range[70].

Glauert’s correction

The following correction introduced by Glauert uses a third order polynomial between a = ac = 1/3
and a = 1 so that the thrust coefficient at a = 1 equals 2:

CTr = 4aF (1− fGa) =

4aF (1− a) when a ≤ 1
3 i.e. fG = 1

4aF
(
1− 1

4(5− 3a)a
)

when a > 1
3 i.e. fG = 1

4(5− 3a)
(C.53)

In practice, if a > 1/3 this relation is inverted using the expression of the local thrust coefficient
from the BET (Eq. (C.21)) to obtain a as:

a = Root of
[
−K + a(1 + 4F + 2K)− a2(5F +K) + 3Fa3

]
∈
[1

3 ; 1
]

(C.54)

with the following constant defined for simplification:

K = σCn
sin2 φ

The three complex roots of this polynomial can be obtained analytically, but their expressions are
long and won’t be written here. Using the analytical solutions also raises the problem of choice
between the three real/complex roots. On modern computer solving this equation numerically is
not be a problem.

Spera’s correction

Spera’s correction consists in using a straight line that would be tangent to the momentum theory
thrust parabola at the critical point ac. The slope of this line is thus:

dCTr,parabola
da

∣∣∣∣
a=ac

= 4F (1− 2ac) (C.55)

Using as a parameter CT1 , the maximum thrust value at a = 1, the equation of the line tangent to
the parabola at ac is:

CTr,linear = CT1 − 4F (1− 2ac)(1− a) (C.56)

For a given value of CT1 the intersection* point ac is found as:

ac = 1− 1
2

√
CT1

F
(C.57)

So eventually the tangent equation is:

CTr,linear = CT1 − 4F (

√
CT
F
− 1)(1− a) (C.58)
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Spera’s correction uses the tangent’s equation after the point ac:

CTr =

4aF (1− a) when a ≤ 1− 1
2

√
CT1
F

CT1 − 4F (
√

CT
F − 1)(1− a) when a > 1− 1

2

√
CT1
F

(C.59)

The above formulation used CT1 as a parameter, but it is also possible to use ac as a parameter
which would lead to the following equivalent formulation:

CTr = 4aF (1− fSa) =
{

4aF (1− a) when a ≤ ac i.e. fS = 1
4F

(
a2
c + (1− 2ac)a

)
when a > ac i.e. fS = ac

a

(
2− ac

a

) (C.60)

The value used by is ac = 0.2, but this value will be argued in a following paragraph where the
different corrections are compared. Using Eq. (C.57) the correspondence between CT1 and ac is
shown on Tab. C.1 for some typical values. As it was done for Glauert’s correction, if a > ac
Eq. (C.60) is inverted using the local thrust coefficient from the BET (Eq. (C.21)) giving:

a = 1
2

[
2 +K(1− 2ac)−

√
(K(1− 2ac) + 2)2 + 4(Ka2

c − 1)
]

(C.61)

where the following variable has been defined for simplification:

K = 4F sin2 φ

σCn

Table C.1: Maximum thrust coefficient and transitional value for the axial induction factor in the context
of Spera’s correction

ac CT1 Note/Reference
0.2 2.56 Wilson and walker 1984 Spera 1994 [42]
0.29 2 Glauert’s corrections
0.33 1.816 Fit to Glauert’s experiment[70]
0.37 1.6 Wilson et Lissaman 1974 [117]
0.46 1.17 Flat disc Hoerner 1965

Glauert’s empirical correction

Another empirical correction found in Manwell et al[70] and attributed to Glauert can be used as
follow:

CT =
{
aF (1− a) when a ≤ 0.4
(aF−0.143)2−0.0203+0.6427×0.889

0.6427 = 0.96 + F (a−0.4)[F (a+0.4)−0.286]
0.6427 when a > 0.4

(C.62)

Expression which is inverted for a > 0.4 as:

a = 1
F

[
0.143 +

√
0.0203− 0.6427 (0.889− CTr)

]
(C.63)

Comparison of the different corrections

The different corrections are plotted on Fig. C.3.
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Figure C.3: Power and Thrust coefficients for different high-loading correction models.

General flow conditions

In reality, it is not likely that the flow will arrive perpendicularly to the rotor due to: horizontal and
vertical wind shear, turbulence, yaw misalignment, blade coning and relative motion of the blades
due to deflection. The only case that can be handled is the coning of the blades(see e.g. [118])
because all the other cases imply an axial induction factor which varies radially and azimuthally.
Nevertheless, the different flow conditions mentioned above can be handled by proper geometric
transformations and models. With a steady BEM code, sector-wise computations are performed
and then averaged, while unsteady BEM codes uses the wind conditions at the current blade
position for the computation of loads.
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Supplementary notes and results regarding
CFD

D.1 Notes on the Post-processing of CFD data

The following reference the basic equations that were used for post-processing of CFD data.

The total force applied on an obstacle is:

F = −
∫∫

S
pn dS +

∫∫
S

(τ · n) dS (D.1)

where p and τ are respectively the static pressure and the viscous shear stress tensor of the flow
on the obstacle surface S. The wall shear stress is given by:

τw = µ

(
∂u

∂y

)
y=0

(D.2)

with u the velocity parallel to the wall and y the distance to the wall. The drag force is the
component parallel to the upstream velocity, and the drag the force perpendicular to it:

Fd = F · U∞
‖U∞‖

(D.3)

The skin friction coefficient is defined as

Cf = τw
1
2ρU

2
∞

(D.4)

An approximate formulation for flat plate with 5 · 105Rex < 107 is:

Cf = 0.0576Re−1/5
x (D.5)

The pressure coefficient is defined as:
Cp = p− p∞

1
2ρU

2
∞

(D.6)

It typically takes negative values of the suction sides and positive values at the pressure side. In the
free stream, Cp = 0, and at a stagnation point the pressure is maximum and the pressure coefficient
is 1.
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The normal aerodynamic coefficient can be computed from the pressure distribution as:

Cn =
∫ TE

LE
(Cp,sup(x)− Cp,inf(x)) dx

c
(D.7)

The integration of the frictional coefficient was also performed but had insignificant contribution to
the lift as expected. The contribution of the frictional coefficient on the drag has a large influence,
but only small investigations were done on this subject. This method of integration was used to
compare with the values obtained with the post-processor and double check the determination of
the angle of attack. This steps also allowed a clearer exportation of Cp data. After this step, values
from the post-processors were directly used. An example of integration of the Cp coefficient is
displayed on Fig. D.1.
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(a) r/R = 50%

Confidential content removed

(b) r/R = 70%

Confidential content removed

(c) r/R = 80%

Confidential content removed

(d) r/R = 90%

Confidential content removed

(e) r/R = 95%

Confidential content removed

(f) r/R = 98%

Figure D.1: Post-processing of CFD data - Integration of Cp at different radial positions. The scaling factor
for the elementary forces is the same for all plots. The intensity of the vectors is function of the Cp but also
the grid size which is not linear. The airfoil shape has been modified for the position 50%.
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D.2 Aerodynamic Coefficients for Blade 1

Comparisons of 2D versus 3D polar for different thicknesses(i.e.) locations on the blades, are found
on Fig. D.2 and Fig. D.3 for Blade 1.

Confidential content removed

(a)

Confidential content removed

(b)

Confidential content removed

(c)

Figure D.2: Comparison of 2D and 3D polars for Blade 1 at different thicknesses
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(a)

Confidential content removed

(b)

Confidential content removed

(c)

Figure D.3: Comparison of 2D and 3D polars for Blade 1 at different thicknesses
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D.3 Aerodynamic Coefficients for Blade 2

Comparisons of 2D versus 3D polar for different thicknesses(i.e.) locations on the blades, are found
on Fig. D.4 and Fig. D.5 for Blade 2.

Confidential content removed

(a)

Confidential content removed

(b)

Confidential content removed

(c)

Figure D.4: Comparison of 2D and 3D polars for Blade 2 at different thicknesses

E. Branlard 170



APPENDIX D. SUPPLEMENTARY NOTES AND RESULTS REGARDING CFD
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(a)

Confidential content removed

(b)

Confidential content removed

(c)

Figure D.5: Comparison of 2D and 3D polars for Blade 2 at different thicknesses
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D.4 CFD visualization of tip-vortex formation

The formation of the tip-vortex and its propagation is illustrated on Fig. D.7 and Fig. D.6 for a
medium speed configuration.

Figure D.6: Vorticity at the tip and formation of the tip-vortex. Figure realized with Ansys. Scales and
dimensions are voluntarily hidden. Property of Siemens, reproduction forbidden.

(a) (b) (c)

Figure D.7: Vorticity behind the blades. (a) 1m - (b) 3m - (c) 5m. Figure realized with Ansys.Scales and
dimensions are voluntarily hidden. Property of Siemens, reproduction forbidden.
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Appendix E
German abstracts

Few german abstracts of the original article from Betz and Prandtl[9] are presented here as they
have been used for the understanding of this article. Such abstracts don’t exists in a numerical
form.

Die Ergebnisse dieser Betrachtung, die ebenso wie die Betz’sche Theorie nur für den
Grenzfall sehr schwach belasteter Schrauben streng gültig sing, lassen sich auf stark
belastete Schrauben erweitern, wenn man, wie Herr Betz in einer anderen noch zu
veröffentlichenden Untersuchung gezeigt hat, in den obigen Formeln für ”v“ und ”r
w‘ die genauen Werte der Strömungsgeschwindigkeiten relativ zu den Flügelprofilen
“v+wa” und “rw-wt” setzt, wobei unter “v” die Zuflussgeschwindigkeit im Unendlichen
vor der Schraube und unter “wa” und “wt” die zusätzlichen Geschwindigkeitskomponen-
ten weit hinter der Schraube verstanden werden. Eine brauchbare Näherung für mässig
belastete Schrauben erhält man übrigens schon dadurch, dass in den obigen Formeln “v”
durch “v+w/2” ersetzt wird, wobei die einfache Vorstellung von in die Luft geschnit-
tenen Schraubenflächen, die sonst hinfällig wird, beibehalten werden kann. Von dieser
letzteren Näherung ist in Formel 8 Gebrauch gemacht.

Diese Radialgeschwindigkeiten klingen aber, wenn die Schraubenflächen hinreichend
dicht stehen, nach dem Innern zu sehr rasch ab, so dass es hier ausreicht, die tangentiale
Komponente “wt” und die axiale Komponente “wa” der Luftbewegung zu betrachten.
Die Bewegung, die bei dem Stoss erzeugt wird, erfolgt im Innern, wie leicht zu stehen,
normal zu den Schraubenflächen, mittelst derer der Stoss auf die Flüssigkeit ausgeübt
wird. Ist “v” die Geschwindigkeit, mit der die luftschraube gegen die Luft fortschreibet,
“w” deren Winkelgeschwindigkeit, dann ist die Steigung der Schraubenflächen “H=vT”,
wo “T=2pi/ww” die Umlaufszeit ist.

[. . . ] Für due Randzone gilt die folgende Sonderbetrachtung. Es sei “a” der senkrechte
Abstand von zwei benachbarten Randkurven der Schraubenflächen. An die Stelle der
Umströmung der Ränder der Schraubenflächen mag nun die Umströmung der Ränder
eines äquidistanten Ebenensystems vom Abstand “a”, gemäss fig2, gesetz werden, um
den Abfall der Zirkulation an der Flügelspitzen zu studieren [. . . ]

Mit “a” nach Gleichung (4), in der ebenfalls gemäss der Anmerkung “v” durch “v+w/2”
ersetzt werden kann. Die Gleichung gilt um so genauer, je mehr Schraubenflügel vorhan-
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den sind, es ist aber zu erwarten, dass sie auch bei wenigen, ja selbst bei zwei Flügeln,
immer noch brauchbare Resultate ergibt.
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F.1 C code for vortex code
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