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ABSTRACT

Abstract

Momentum analysis through Blade Element Momentum (BEM) and Com-
putational Fluid Dynamics (CFD) are the two major paths commonly fol-
lowed for wind turbine aerodynamic and aeroelastic research. Instead, the
current PhD thesis focuses on the application of vortex-based methods.
Vortex-based methods are understood as both simple vortex models and
advanced numerical vortex methods. Prandtl’s tip-loss factor and Cole-
man’s yaw model are examples of features that were obtained using simple
vortex models and implemented in BEM-based codes. Low-order vortex
lattice codes and high-order vortex particle methods have regained inter-
est in wind energy applications over the last two decades. The current
work derives and illustrates some of the potential benefits of vortex-based
analyses.
The two key wake geometries used in this study to derive simple vortex
models are the cylindrical and helical wake models. Both models can be
attributed to the work of Joukoswki. They are further studied in this
thesis. The cylindrical wake model is detailed for the finite-tip speed ratio
case. A superposition of such models is used to investigate the effect of
wake rotation. A proper implementation of this effect in BEM codes is
suggested. The application to yawed conditions leads to the derivation of
a new yaw model applicable in BEM codes. Further applications of the
cylindrical wake model considered include the study of unsteady inflow
and sheared inflow. The helical wake model is used to derive a new-tip
loss factor intended to be used in BEM implementations.
The current thesis also presents the implementation of a vortex code to
further investigate wind turbine aerodynamics. The code consists of both
low-order and high-order formulations. The implementation features are
described and illustrated through different validation cases. Analytical
results, measurements and CFD simulations are used for comparison and
validation. Low-order methods are used to validate the simple vortex mod-
els. The vortex particle method is applied to model a turbulent field and
investigate the impact of a wind turbine on the inflow turbulence. The
code is coupled to the in-house aero-servo-elastic code in order to obtain a
"next generation" aeroelastic simulation tool.
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ABSTRACT

Abstract in Danish

Momentum analyse, som er hjørnestenen i Blade Element Momentum
(BEM) beregninsværktøjer, og Computational Fluid Dynamics (CFD) er
de to hovedretninger som størstedelen af den vindmølle-aerodynamiske
og -aeroelastiske forskning baseres på. Den nærværende PhD afhandling
fokuserer i stedet på anvendelsen af hvirvelbaserede metoder. Med hvirvel-
baserede metoder menes der både på de simple analytiske hvirvelmodeller
og de avancerede numeriske hvirvelmetoder. Prandtl’s tip-tabsfaktor og
Coleman’s yaw model er eksempler på udvidelser af de BEM-baserede
beregningsmodeller, der er opstillet ved hjælp af analytiske hvirvelmod-
eller. Lav-ordens hvirvelbaserede panelkoder (vortex-lattice methods) og
højere-ordens hvirvelpartikelmetoder (vortex particle methods) har fået
mere opmæksomhed fra forskningsmiljøerne indenfor de sidste to årtier.
Den nærværende afhandling illustrerer nogle af de potentielle fordele ved
hvirvelbaserede analyser.
De to vigtigste kølvandsgeometrier der i denne undersøgelse er anvendt
til at udlede de simplere analytiske hvirvelmodeller er cylindriske og
spiralformede kølvandsmodeller. Begge modeller kan spores tilbage til
Joukowski. Den cylindriske kølvandsmodel bliver opstillet for et en-
deligt tiphastighedsforhold. Superposition af sådanne elementarmodeller
bruges til at undersøge effekter fra rotation af kølvandet efter rotoren,
hvorved en konsistent implementation af denne effekt i BEM baserede
koder er udviklet. Applikation af hvirvelmodellen på vindmøller under
krøjende forhold har resulteret i udviklingen af en ny krøjeaerodynamik-
model til BEM baserede koder. Yderligere anvendelse af den cylindriske
kølvandesmodel omhandler studiet af instationære forhold samt shearet
anstrømning. Den spiralformede kølvandsmodel er anvendt til at udlede
en ny-tip tabskorrektion til applikation i BEM-baserede koder.
Denne afhandling omhandler også udvikling og implementation af en nu-
merisk hvirvelkode til yderligere analyse af vindmølleaerodynamik. Koden
har både lav-ordens og høj-ordens formuleringer af hvirvelelementer. Ko-
dens funktionalitet er beskrevet og illustreret gennem forskellige valider-
ingstilfælde, hvor analytiske resultater, måledata samt CFD simuleringer
er blevet brugt til sammenligning og validering. Analytiske hvirvelmod-
eller er anvendt til validere de simplere hvirvel modeller i koden. Partikel-
versionen af hvirvelmetoden er anvendt til at modellere en turbulent ind-
strømning og undersøge effekten af en vindmølle på den indstrømmende
turbulens. Koden er derudover koblet til DTU’s aero-servoelastiske kode
for herved at opnå et "next generation" aeroservoelastisk simuleringsværk-
tøj.

ii



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Dissemination during the period of the PhD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
Aknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi
List of symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

I Vortex models for rotors in uniform inflow
1 Cylindrical vortex model for finite and infinite tip-speed ratios . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Superposition of cylindrical models - Effect of wake rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Helical vortex model applied to tip-losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

II Vortex models for rotors in yaw
4 Yaw-modeling using a skewed vortex cylinder model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5 Simple implementation of a new yaw model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6 Advanced implementation of the yaw model - Pre-study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

III Vortex models for rotors in shear and unsteady inflow
7 Shear-model of Gaunaa et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8 Model for unsteady circulation and inflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

IV Implementation of a vortex code for aero-elastic simulations
9 Description of the implemented vortex code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
10 Vortex code validation and illustration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
11 Examples of wind energy validation cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

V Vortex methods for complex inflow and aero-elastic simulations
12 Reconstruction of a velocity field using vortex particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
13 Effect of wind turbines on the turbulent inflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
14 Aeroelastic simulation of a wind turbine under turbulent and sheared conditions . . . . . . . . . 89

VI Final remarks and Bibliography
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

iii



CONTENTS

VII Appendices
A Vortex cylinders and vortex disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
B Helical vortex filaments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
C Kutta-Joukowski theorem applied to a rotor with straight lifting lines . . . . . . . . . . . . . . . . . . . 151
D Vortex theory for rotors: Helical wake, optimal circulation, tip-losses and wake expansion . 157
E Right cylindrical vortex model applied to wind energy - Complements . . . . . . . . . . . . . . . . . . . 181
F Application of the helical and cylindrical models - comparison with Actuator disk . . . . . . . . 189

iv



Introduction

This thesis summarizes the work of the author during a three year PhD project performed at the
“Aero-Elastic Design” (AED) section of the Wind Energy department of the Technical University
of Denmark (DTU) from the 1st of April 2012 to the 31st of March 2015. The project was entitled:
“Analysis of wind turbine aerodynamics and aeroelasticity using vortex-based methods”. The topic
is further introduced below. Paragraphs marked with an asterix (∗) are un-conventional but slightly
more human since they are the manifestation of the author taking liberties and pleasure in writing
this introduction. They can be safely skipped.

(∗) Where to start • Four questions are hidden in the title of this paragraph depending on
what the symbol “•” stands for: “the writing of this thesis”, “this PhD project”, “if you read this
thesis and are disappointed it doesn’t cover all what the title promise”, “if you are new to the field”.
The first question is now implicitely answered. The three remaining questions are addressed in this
paragraph by suggesting four sources of information. The author is constantly learning from the
first two of them. First, a list of references most cited in this thesis is given in table 1. The list gives
an indication of the work on which this thesis is built on. Second, a list of reference books associated
to each of the keyword of the PhD title is given in table 2. None of the content of this thesis could
supplement the reading of the references mentioned in these two tables. Third, a summary of the
understanding of the field by the author was written in a separate document [21]: The reading
of this document can be seen as a starting point to the reading of this thesis for someone with a
wind-energy aerodynamics background. Last, the following paragraph introduces the main notions
used.

(∗) Main notions involved This paragraph attemps to introduce a simplified description of the
different notions and methods used in this thesis.
The notions of vortex and vorticity are strongly linked. Vorticity is a measure of the local rotation
of a fluid particle. A vortex represents a coherent flow structure which can be characterized by
a large scale rotation of the fluid. A tornado can be thought as an example of a 3D vortex of
tubular shape. If one could imagine that there is such a thing as an ideal tornado, then one could
picture the air rotating in a perfectly circular motion around it. Far from it, the rotation should be
zero since a tornado is only felt in a local area. The velocity can then be thought to be inversely
proportional to the distance to the tornado center. If this is the case though, the velocities near
the core would reach infinity. Viscous forces prevent this and a physical solution is reached where
the velocity smoothly drops to zero at the center. It can be shown that in this case the vorticity is
zero everywhere except close to the core of the tornado. This is a property which may come as a
surprise if one forgets that vorticity measures a local rotation and not a global rotation.
Circulation is an integrated value of vorticity over an open surface, say a disk. One could simplify
the tornado further by concentrating all the vorticity carried in the core into a straight vertical
tube such that the circulation of a cross section of the core and a cross section of the tube have
the same value of circulation. Reducing the cross section of the tube to a point while keeping
the circulation constant results in a straight vertical line that contains all the vorticity. In this
idealization process, the area where the viscous forces were taking place has been reduced to zero
and the resulting velocity field does tend to infinity towards the center. This can be seen as the
price one has to pay when too much simplicity is sought: inviscid solutions do not have the physical
smoothness we are used to. The gain is great though since outside of the area where viscosity is
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INTRODUCTION

Table 1: List of most cited references in this thesis

Reference Citations
Hansen 2008 [79] 25
Cottet and Koumoutsakos 2000 [52] 18
Okulov and Sørensen 2008 [150] 14
Burton et al. 2002 [34] 12
Katz and Plotkin 2001 [96] 12
Coleman et al. 1945 [46] 12
Wald 2006 [218] 11
Voutsinas 2006 [217] 11
Goldstein 1929 [72] 11
Winckelmans and Leonard 1993 [221] 10
Saffman 1992 [170] 8
Glauert 1935 [71] 8
Gaunaa et al. 2015 [67] 8
Theodorsen 1948 [203] 7
Lewis 1991 [116] 7
Batchelor 1967 [9] 7
Wrench 1957 [223] 6
Burton et al. 2011 [35] 6
Winckelmans 2004 [220] 6
Papadakis 2014 [155] 6
Øye 1990 [152] 6
Hejlesen et al. 2013 [84] 6
van Garrel 2003 [211] 6
Beale and Majda 1985 [12] 6
Beale and Majda 2011 [13] 6

Table generated with:
cat ∗ . aux | grep −oPoPoP ’(?<=\\ c i t a t i o n \{) .∗(?=\}) ’ | tr , ’\n ’ | sort | uniq −c |

sort −nr | grep −v branlard |head −25|awk ’{ p r i n t " \\ citeAY{ " $2 "}&\\ c i t e { " $2
"}&" $1 " \\\\ " }’>Re fL i s t . tex

known to be at play, the results from the simplified model are valid to a high degree and most of the
time can be obtained at a lower cost. The velocity field of this idealized model can be determined
from the knowledge of the vorticity strength by means of the Biot-Savart law. Under the context
of applicability of this law, there is a causal link between vorticity and velocity and one will talk
of velocity induced by the vorticity. The current thesis will greatly make use of this idealization
approach. In most contexts, the terms vortex and vorticity will be blurred together in light of the
idealized-vortex/concentrated-vorticity tornado example.
Vorticity is present at every scale of fluids: in the agitations of heated molecules, in the wake of a
tea spoon, in the turbulent eddies of the sea or atmosphere, up to the plasma and gas motion in
the formation of a star. Certainly it can be found in the wind energy context.
Let us first consider the wind on planet Earth. The atmosphere is heated by the sun and is cooled
by radiation to outer space. Difference of temperatures in the atmosphere implies difference of
pressure and air density. Just like the air flows out of a pressure cooker, the wind tends to flow
from areas of high pressure to areas of low pressure in the atmosphere. Since the wind does not go
through the ground and is zero inside the earth, the velocity at its boundary has to drop smoothly
to zero. This once again is the effect of the viscous forces that drag down the wind velocity near
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INTRODUCTION

Table 2: Reference books used and suggested by the author for each of the keyword of the PhD title

Keyword Reference book
Wind turbines Burton et al. 2011 [34]
Wind turbines Manwell et al. 2003 [133]
Aerodynamics Lamb 1932 [108]
Aerodynamics Batchelor 1967 [9]
Wind turbines aerodynamics Hansen 2008 [79]
Aeroelasticity Bisplinghoff et al. 1996 [18]
Vorticity Saffman 1992 [170]
Vortex methods Cottet and Koumoutsakos 2000 [52]
Vortex methods Katz and Plotkin 2001 [96]

the boundary. The region where this effect predominates is called the boundary layer. The fact
that the wind velocity is not uniform but drops to zero will be referred to as shear. A shear
is associated with vorticity generation, a bit like pushing a shopping cart with one arm stronger
than the other will make the cart rotate, the difference of wind speed with height makes the fluid
particles rotate. The boundary layer is characterized by a mean shear profile, but perturbations
about the mean are to be expected. The perturbations can be due for instance to: changes of
temperature in the atmosphere, obstacles for the wind or the roughness and the temperature of the
ground and water surfaces. A perturbed pendulum will eventually stop due to the friction of the
air. Similarly, a perturbation, or an irregular displacement of the air at any scale will progressively
decay under the effect of viscous diffusion. Yet, the sources of perturbations being so numerous
and the viscosity having only limited power, the atmospheric flow field is constantly in a perturbed
state. The perturbations in the velocity field are called turbulence. A turbulent field contains
large and small scale vortex structures depending on the source of perturbation and the age of the
perturbation. The presence of shear facilitates the propagation of perturbations and gives more
energy to turbulence. Shear and turbulence are the two main components that affects the wind
experienced by a wind-turbine. The vertical wind-direction change induced by the Coriolis force
and referred to as veer is a third one.
Just like planet Earth, a wind turbine is a solid that does not let the wind pass through it. Boundary
layers are present on all the wind turbine surfaces exposed to the wind and each of them contributes
to adding vorticity to the wind. The difference is that the wind turbine is immersed in the wind and
thus there is a continuation of the boundary layers after the surfaces, named wakes. The airfoils
forming the blades play a special role. The idealization procedure applied to an airfoil will condense
the vorticity contained within the boundary layer and reduce it to the surface of the airfoil. The
vorticity in the wake would be condensed into a vortex sheet. The vorticity carried by the airfoil
is referred to as the bound vorticity. This vorticity at the boundary of the body is a generalized
vorticity since it is of different nature than the one defined within the fluid. In a steady case, the
vorticity in the wake is only composed of one component which is referred to as trailed vorticity.
In an unsteady case, a change of configuration of the airfoil with time will result in a change of
its boundary layer and thus a change of generalized vorticity. This change of vorticity, called shed
vorticity should exit the airfoil. This release naturally occurs at a point of least resistance and can
be assume to merge with the wake vortex sheet behind the airfoil. The turbine wake tends to roll-up
around the stronger vortices, which are usually generated around the tip and root of the blade.
This information can be used to further simplify the wake vorticity model. Just like the tornado,
the airfoil can be simplified down to a vortex surface or a vortex line. Further simplifications can
be obtained by assuming that the turbine has an infinite number of blades. The rotors is then
modelled by an actuator disk (AD) of vorticity.
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INTRODUCTION

The air molecules impact and induce friction on the wind turbine blades. Both actions from the
inflow produce an integrated aerodynamic force. This force is decomposed into two components
perpendicular and parallel to the inflow, respectively called the lift and drag forces. In an inviscid
approach, the vorticity carried by the airfoil is responsible for the lift force and the relation between
the airfoil circulation and the steady lift force is given by the Kutta-Joukowski (KJ) relation. The
effective work of the aerodynamic forces is used to rotate the turbine and generate electricity. The
source of this energy is the kinetic energy of the wind. The fact that the wind turbine extracts energy
from the wind implies a reduction of the wind speed upstream and downstream of the turbine. This
velocity reduction can be understood in a vorticity formulation as the effect induced by the bound
and wake vorticity. The deformation of the turbine under the effect of the aerodynamic forces is
referred to as an aero-elastic response. Most aero-elastic investigations are unsteady.
By idealizing the bodies with concentrated vorticity, it was shown that the entire problem of a wind
turbine and its inflow can be characterized by vorticity. The current thesis will make use of this
aspect.

Vortex-based methods The notion of vortex-based methods, as understood by the author and
his supervisor, needs clarification before further presentation of the topic. Vortex-based methods
focus on the generation and tracking of vorticity (ω) as opposed to conventional fluid dynamics
formulations that solve for the velocity (u) and pressure (p). Another example of non-conventional
formulation is given by spectral methods. All approaches are mathematically equivalent under the
same assumptions. Simple u-p analyses of actuator disks are referred to as momentum theory by the
community. Algorithms have been devised based on these analyses leading to the development of
Blade Element Momentum (BEM) codes which are widely used for aero-elastic wind turbine design.
Grid-based implementation of advanced velocity-pressure formulations will be further referred to
as traditional or conventional computational fluid dynamics (CFD) codes. As mentioned in the
previous paragraph, a vortex is a coherent structure of the flow which is partially characterized by
a strong value of vorticity. Most vortex methods deals with elementary functions which produces
a flow that can be assimilated, mathematically or physically, to an elementary vortex. This proba-
bly explains why the term “vortex methods” was historically retained compared to a more correct
appellation such as “vorticity-based methods”. The scientific community working in the field tradi-
tionally uses the term “vortex methods” to refer to high-order Lagrangian particle methods. Particle
methods offers great advantages for performing long-term simulations of high-accuracy thanks to,
e.g., the implementation of remeshing techniques and viscous effects. Vortex lattice methods using
vorticity segments cannot handle these effects in an easy way since they require a handling of the
connectivity between elements. Simple vortex lattice methods made of rectilinear segments are
thus regarded as low-order methods, and the term “vortex-model” is sometimes preferred by the
community of high-order vortex methods. In the current thesis, this distinction will not be made
and the above definition of “vortex-model” will not be adopted. Instead, the terms “vortex-model”
and “vortex-theory” will be used indifferently to refer to even lower order methods, viz.: methods
that simplify a problem using prescribed vorticity support of simple geometrical shapes. The nu-
merical complexity of vortex models is null or negligible compared to the one of vortex methods.
The term “vortex-based methods” will be used in this thesis to cover both “vortex methods” and
“vortex models”.

Justification of the PhD topic Before detailing the scope of the topic, its justification as a
research topic is presented.
Curiosity (& Co.) Curiosity is the main factor that drove this investigation. Knowledge’s sake, if
ethical, is believed to be enough of a justification to the author for a research topic. Economical
justifications follows from the fact that a better understanding of wind turbine aerodynamics and
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INTRODUCTION

aeroelasticity will result in the development of better-suited and cheaper wind turbines and partic-
ipate to the reduction of the cost of energy. Environmental motives are indirect justifications but
direct motivations. As mentioned above, the choice of using vortex-based analysis is a key to make
this research topic unique. Main justifications of this choice follow.
A good alternative. BEM codes and conventional CFD codes are the two major paths that are
currently followed for wind turbine aerodynamic and aeroelastic research. Vorticity has to be
expressed into velocity gradients in a u-p formulation. The vortices are then exposed to numerical
diffusion when a grid-based CFD method is used. Lagrangian vortex methods on the other hand
are known to present less diffusion of vorticity [52]. In a problem where many vortices are present
(turbulence, turbine wakes), it appears of interest to have vorticity as primary variable and use
grid free numerical methods. Lagrangian vortex methods offer both options. Furthermore, classical
aerodynamic theories like the lifting line or lifting surface ones, are also formulated in terms of
vorticity and thus the presence of a wind turbine can be readily introduced in a unified vorticity
way. Vortex-based methods have been extensively used in aircraft and helicopter aerodynamics but
to a lesser degree within wind turbine research. Inviscid panel methods and lifting line codes have
been used for many years for aircraft and helicopter modelling [113]. Wind energy applications
differs from the fact that induced velocities in the wake keep the vorticity close to the rotor. The
accuracy of the near-wake description is thus of greater importance than for helicopter and aircrafts.
Vortex theory has been used to derive key results of wind turbine aerodynamics and derive simple
engineering models used in BEM codes. Vortex methods have regained interest in wind energy
applications over the last two decades (see [80]). Yet, vortex-based methods have not been used
to their fullest.
Compromises. A wide range of formulations are possible in vortex methods and different level of
complexity and accuracy may be achieved [52]: At a similar computational cost, a cylindrical vortex
wake model gives results similar to those of a BEM code [26], and high-order vortex methods can
reach accuracy of the same order as traditional CFD or spectral methods [53, 222, 225].
Low-order vortex methods on the other hand can be seen as an intermediate between BEM and
CFD codes: They offer the possibility to introduce compromises such that their computational cost
is lower than for CFD codes while the actual physics are better resolved than in the case of the
computationally lighter BEM-based codes. Examples of compromises are for instance: representing
a 3D wing by a lifting surface or a lifting line, simplifying the far-wake of an object by simple vortex
elements such as vortex points or a vortex cylinder, assuming a prescribed vorticity support, etc.
This trade-off between computational time and physical modelling allows low-order vortex methods
to be used for optimizations. The key drivers can then be identified before using higher-order fidelity
tools. The broad spectrum of compromises possible with vortex-based methods is one of its key
advantage.
Causality. Vortex theory and low-order vortex methods offer the possibility to pinpoint driv-
ing mechanisms and separate effects within different physical phenomena. Indeed, as previously
mentioned, the Biot-Savart law introduces a mathematical and causal link between vorticity and
velocity. A given vorticity patch induces a velocity field in the entire domain and may be identified
as the source explaining a given observed phenomenon. For example, one can identify the effect of
the shed and trailed vorticity behind a wing separately, or the effect of tangential and longitudinal
vorticity of a wind turbine wake. This approach yields to a better understanding of many situations
for both steady and unsteady rotor aerodynamics. With this better understanding of the physics at
play, vortex-based methods can open up possibilities for improving existing models and developing
new models for BEM-based codes.
BEM codes extensions As mentioned above, the physical modelling and the computational time
requirement of low-order vortex codes may be seen as a compromise between the ones of BEM
codes and the traditional CFD codes. Performance of low-order lifting-line codes have shown
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to give results within the same range of accuracy as BEM codes [174, 76, 28] but it is usually
difficult to prove better performance. The physical modelling of such vortex codes is of greater
complexity but they usually suffer from their singular behavior and results are usually dependent
on the choice of the viscous core model [209]. Higher-order vortex methods do not present this
problem. For unsteady flow, non-uniform inflow or yawed cases, BEM-based codes rely to a high
degree on empirical correlations. The knowledge that can be extracted using vortex methods can be
used to improve existing engineering design-and-analysis models, which are mostly based on BEM
theory. Vortex methods of any-order furthermore allow the investigation of the effects of sweep and
non-planar rotors, which is impossible with the BEM-based tools currently used. Also, since most
structural codes currently rely on BEM methods for their aerodynamic computations, a significant
improvement can be obtained by coupling them with a vortex code for advanced aeroelastic studies.

Topic and main objectives The PhD topic offers many possible applications and the chosen
fields of investigation need to be further defined. The scope of the study was restrained in the early
stage of the PhD. The description, taken from the PhD application, is given below.

The aim of the project is to investigate the potential gain one can obtain from vortex-
based analysis as opposed to traditional analysis. The PhD project should focus on the
implementation of a flexible vortex-based code and the development of mathematical
models which should be used to investigate fundamental issues and phenomena linked to
steady and unsteady wind turbine aerodynamics. Specifically, operation in the compu-
tationally challenging unsteady conditions of yaw, shear and turbulent inflow are defined
as the field of application of this work. The overall goals of the project are threefold:

1. Developing and implementing a flexible, unsteady vortex-based aerodynamic model
to investigate the unsteady effects of yaw, shear and turbulent inflow.

2. Coupling this model to the structural model in HAWC2 [110] to obtain a “next
generation” aeroelastic simulation tool.

3. Analysis of the predicted rotor aerodynamics for cases with yaw, shear and tur-
bulent inflow with the aim of using vortex code results and results from simple
models in order to improve engineering BEM based models.

Approach chosen In the early literature-review stage of the PhD it was assessed that the imple-
mentation of a high-order vortex code would take a significant amount of programming time since
the implementation would have to start from scratch. Furthermore, at the early stage of the PhD,
high-order vortex methods appeared really hard to comprehend and the author had to admit that
it would be unrealistic to expect to contribute to the field of vortex methods (e.g. implementing
a new solver, using new projection functions, different divergence-free corrections, etc.) without
drifting away from the wind-turbine topic. Instead, it was chosen to implement a flexible low-order
code in order to fulfill the two first aims of the PhD presented in the previous paragraph as early as
possible. Even then, the contribution to the field would imply a strong dedication since medium-
to-low order vortex codes were already coupled to aeroelastic codes, as e.g. the coupling of GAST
and GenUVP developed by NTUA [168, 132] or the use of a mixed vortex-filaments/vortex-rings
code by NTNU [57]. The rest of the time would be used to focus on the third goal: apply vortex-
based methods to the specific topics of yaw, shear and turbulence. The two key advantages of
vortex-based methods to the author’s opinion, namely compromises and causality, would then be
exploited for these analyses. It was thought it would be more realistic to contribute to the field by
using this approach rather than doing direct application of the vortex code to the different fields
since the former is less common than the latter.
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(∗) What really happened Let us set I = the author in this paragraph. I chose to alternate
between the different goals and topics in a difficult attempt to discuss them all. The first few
months of the PhD were dedicated to a literature review on vortex theory. The reading of the
book of Theodorsen [203] and the article of Wrench [223] led to the continuation of a previous
work [20, 28] on the topic of optimal circulation (unpublished but given in Appendix D) and
tip-losses [22]. The implementation of the low-order vortex code and its coupling to HAWC2
followed within the first year of the project. Then, the topic of yaw was chosen as a first field of
investigation. The discovery of the article of Coleman et al. [46] was illuminating: It raised interest
into the derivations of vortex theory results related to vortex rings and vortex cylinders. It appeared
possible to contribute to existing work by focusing on the case of finite tip-speed ratio, both for right
and skewed cylinders. This led to a study of nine months on the topic. On the side, I worked in
collaboration with a colleague from the department DTU Compute in order to parallelize the O(N2)
part of the vortex code with MPI and GPU technologies. After nine months, the vortex code reached
a computational time low-enough to perform long term simulations. It was thus chosen to take a
break from vortex theory and focus on the vortex code. To my opinion, one disadvantage of low-
order vortex methods was the singular behavior and the absence of viscosity handling. One month
and a half were dedicated to implement different viscous models and compare the results to actuator
disk simulations. Turbulent simulations were also performed using the wind module of HAWC2.
Satisfying results were obtained with the low-order vortex code but I realized that high-order vortex
particles methods would be required to further perform viscous and turbulent simulations with high-
accuracy. Another one month and a half was dedicated to set up and investigate a BEM yaw model
based on the vortex theory results obtained from a skewed vortex cylinder. The study revealed
that a superposition of cylinders would potentially improve the results. I thus returned to “vortex-
theory” analysis to investigate the possibility to use a superposition of vortex cylinders. The case of
right cylinders were considered first. At a time corresponding to about 2 years and two months into
the PhD, a master student started a six months project in view of accelerating the vortex code by
implementing a tree-code algorithm for the vortex particles interaction. At this stage of the PhD,
the topic of shear had still not been investigated. Fortunately, I got involved in a vortex model
work on the topic by my supervisor and briefly contributed. Later attempts to investigate shear
using low-order vortex methods revealed difficult: Such investigation requires a proper account of
the boundary conditions since the support of the shear vorticity is infinite but the computational
domain is finite. The topic of shear was thus put aside, waiting to see if time will remain in the
PhD to implement a high-order particle vortex code with a Poisson solver that could be used to
satisfy such boundary conditions. In the mean time, the work on the superposition of cylinders led
to the idea of using the model for simple unsteady simulations. I then had the opportunity to visit
the department of Gregoire Winckelmans at the University Catholic of Louvain, Belgium, whose
group focuses on high-order vortex methods. This visit further convinced me on the need to use
high-order particle methods. I stayed one month at the University of Victoria, Canada, and focused
on learning and implementing tools needed by 2D high-order vortex methods. I then had the great
opportunity to visit the department of professor Spyros Voutsinas at NTUA, Greece, for a period
of one month. During this period, I worked on applying the newly implemented tree-code to study
the impact of a wind turbine on turbulence using vortex particles. A month was then dedicated to
the writing of this thesis. After that, I visited NTUA again to work on the topic of shear. I was
given access to a Poisson solver developed at NTUA to perform efficient particle-mesh simulations.
The solver was coupled with the vortex code during this period. Due to time constraint though,
the study on the topic of shear and turbulence had to be performed using the tree-algorithm and
not the Poisson solver. The remaining two weeks of the PhD were dedicated to reviewing and
shortening the text of the appendix. The thesis was delivered on the serious date of the 1st of April
2015.

xi



DISSEMINATION

Structure of the document The main corpus of the PhD thesis will focus on the contributions
of the author. Background information necessary to apprehend the different vortex models and
vortex code features were gathered in a different document [21]. The appendix features extra
details that complement the results given in the different publications. Significantly less time was
dedicated to the appendix than to the work of the different publications.
The main corpus consists in six parts, each part being divided into 2 to 3 chapters, each chapter
consisting in 4 pages (except for chapter 9, and only for the a4-version). The chapters have a
limited scope and it was chosen to keep the literature reviews within each chapter instead of
gathering all of them into an introductory part. Most chapters correspond to a publication. The
article is mentioned at the beginning of the chapter when it is the case. The literature review and
conclusions are directly taken from the publication with slight modifications to ensure the cohesion
of the thesis. To futher reduce the length of this thesis, only the key results of the papers are
developed in the corpus with limited details. For further concision, the information given in figure
captions is not repeated in the text.
The three first parts are dedicated to vortex models and are divided according to the different flow
situations investigated, namely: uniform inflow, yawed inflow, sheared inflow and unsteady inflow.
The fourth part introduces the vortex code implemented, the choices made and the validation cases
run. The vortex code is yet used in parts I to II and careful reference to the implementations of
part IV are made. Part V focuses on advanced applications of the vortex code. The last part of
the corpus summarize the conclusions and envisages future work topics.
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• Supervision of master student P. Mercier for his 6 months masters’ thesis on the topic: “Fast

vortex method for large scale wind energy simulations” [136].
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• Preliminary development of a license manager for linux to be used with HAWC2.
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• vim-matlab-behave: reproduce matlab editor behavior (e.g. run functionality) for vim.
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List of symbols

Lower case letters
a Axial induction factor
aB Axial induction factor local to the blade
â Axial induction factor from 2D MT
a′ Tangential induction factor
c Chord
h Helix pitch
hB Apparent pitch h/B
h Normalized pitch h/R
k2 Elliptical parameter for elliptic integrals
kt Turbulent kinetic energy
l Helix torsional parameter
l Normalized torsional parameter l/R
m Elliptical parameter for elliptic integrals
nrot Rotational speed in RPM: Ω/(2π)
p Static pressure
q Heat flux
r Radial position
t Time
t0 Parameter in the core-spreading model
r Dimensionless radial position r/R
r̃ Dimensionless radial position r/R
s Sign
uθ Tangential induced velocity
uz Axial induced velocity
u x-component of velocity
v y-component of velocity
w z-component of velocity
w Wake relative longitudinal velocity (Betz)
z0 Surface roughness length

Upper case letters
A Angular Impulse
A Area
AR see Abbreviations
B Number of blades
CΓ Dimensionless circulation
Cd Drag coefficients
Cl Lift coefficients
Cn Normal aerodynamic coefficient
Cp Power coefficient
Cq Local torque coefficient
CQ Total torque coefficient
Ct Tangential aerodynamic coefficient
Ct Local thrust coefficient
CT Total thrust coefficient
D Drag force
D Rotor diameter
D Deformation matrix

E Complete elliptic integral of the 2nd kind
E Energy
E Enstrophy
F Tip-loss factor
Fa Tip-loss factor based on axial induction
FΓ Tip-loss factor based on circulation
FCl Performance tip-loss factor
FGo Goldstein’s tip-loss factor
FGl Glauert’s tip-loss factor
FPr Prandtl’s tip-loss factor
FSh Shen’s tip-loss factor
F Complex velocity potential in 2D
It Turbulence intensity
I Linear Impulse
J Helicity
G• Green function associated to the operator •
H Heaviside function
K• Kernel (associated to a given operator •)
K Complete elliptic integral of the 1st kind
L Lift force
Ma Mach number
P Power
P Palinstrophy
Q Rotor torque
Q Vortical Helicity
R Rotor radius
Re Reynolds number
S Surface
S Energy density spectrum
Sd Volume of the unit-spere in Rd
T Thrust force
T Temperature
U Longitudinal velocity at the rotor in 1D
U Relative velocity at the rotor
U0 Longitudinal velocity far upstream
Ui Induced velocity in 1D
Un Velocity normal to the rotor
Ut Velocity tangent to the rotor
V Velocity vector
Vr Rotor velocity Ωr
Vrel Relative velocity
V Volume
W Induced velocity vector at the rotor

Lower case Greek letters
α Point/Blob vorticity intensity
α Angle of attack
β Twist angle
γ Surface vorticity - Distributed circulation
γt Vortex cylinder tangential vorticity
γl Vortex cylinder longitudinal vorticity
γb Bound vorticity
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δ Dirac function
ε Pitch angle of the wake helix screw
ε Regularization parameter
εl/d Lift-over-drag ratio
ζ Regularisation/cut-off function
η Efficiency
θ Azimuthal coordinate
κ Goldstein’s factor
λ Tip speed ratio = ΩR/U0
λr Local speed ratio = λr/R
λ First Lamé’s coefficient
µ Second Lamé’s coefficient
ν Kinematic viscosity = µ/ρ
ρ Air density ≈ 1.225 kg/m3

σ Local blade solidity = Bc/2πr
σ Cauchy stress tensor
τ Shear stress, viscous stress tensor
φ Flow angle
χ Wake skew angle, in yaw conditions
ψ Azimuthal coordinate
ψ Vector potential
ω Rotational speed of the wake
ω Vorticity

Upper case Greek letters
Γ Circulation
∆ Laplacian operator ∇2

Θ Dilatation
Π Gate function
Π Complete elliptic integral of the 3rd kind
Φ Velocity Potential
Ψ Stream function (2D)
Ψ Stokes stream function (3D)
Ω Rotational speed of the rotor
Ω Rotation matrix (fluid kinematics)
Ω Solid angle
Ω Total vorticity

Scandinavian letters
∅ Empty set

Abbreviations
1D One dimension
2D Two dimensions
3D Three dimensions
AD Actuator Disk
AEP Annual Energy Output
AED Aeroelastic Design (section at DTU)
AL Actuator Line
AR Aspect ratio of a wing (b2/S)

BEM Blade Element Momentum
BET Blade Element Theory
CFD Computational Fluid Dynamics
CPU Central Processing Units
DOF Degree of Freedom
DTU Technical Universtiy of Denmark
ECN Energy Center of the Netherlands
GPU Graphical Processing Units
HSS High Speed Shaft
IEC International Electrotechnical Commission
KJ Kutta-Joukowski
LE Leading edge
LES Large Eddy Simulation
LHS Left Hand Side
LSS Low Speed Shaft
MT Momentum Theory
NTUANational Technical University of Athens
PSE Particle Strength Exchange
VC Vortex Code
VC Vortex Cylinder (depending on context)
VL Vortex Lattice
RHS Right Hand Side
SGS Sub-grid scale model
ST Stream-tube Theory
TE Trailing edge
TKE Turbulent Kinetic Energy
WD Wind direction
WS Wind speed
WT Wind Turbine

Operators
tX Transpose
XT Transpose
∇ Del operator, “nabla”
div Divergence, divX = ∇ ·X

divT = ∂j(Tij)ei
grad Gradient, gradX = ∇X
grad Gradient of first order tensor
curl Rotational, curlX = ∇×X
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Chapter1
Cylindrical vortex model for finite and
infinite tip-speed ratios

This chapter is based on the following publication: ‘Cylindrical vortex wake model: right cylinder’
[23].

Prologue A simple vortex model of a rotor with infinite number of blade is presented in this
chapter. It will form the basis for the analysis performed in several chapters of this thesis: chapters
2, 4, 7 and 8.

1.1 Introduction and Context
The vortex model consisting of a circular cylinder with uniform circulation, introduced by Joukowski
[94] in 1912, may be seen as the simplest vortex model of the wake of a rotor. In 1935, Glauert
noted that this model gives similar results to the 2D momentum theory (MT) [71, p. 230]. The
right vortex cylinder with tangential vorticity is not only a classical fluid-dynamic but also magneto-
static problem. In 1926, Müller [143] derived analytical formulae for the magnetic field of a finite
solenoid based on the mutual inductance of two circular rings. In 1960, Callaghan and Maslen [37]
presented formulae based on the derivation of the vector potential. Their work can be applied
in fluid-dynamics to obtain the velocity field induced by the tangential vorticity of a right vortex
cylinder. In 1974, analytical formulae were derived by Gibson [69] for the velocities induced by
the tangential and longitudinal vorticity of a semi-infinite circular cylinder. Gibson followed a
different approach than the previous authors. His results are based on a general Lemma and the
use of integration by parts. Conway derived expressions for the system using Bessel functions and
provided expressions for an arbitrary radial loading using integral relations [51, 47]. Conway also
provided results for the velocity on the axis for different analytical radial distributions. In 1980,
George [68] presented induced velocities formulae for a cylinder which cross section is an ellipse that
deviates only slightly from a circle. Investigations of the vortex cylinder model were also applied
to yawed configurations as will be seen in chapter 4.
Further improvement of the cylindrical wake model includes the addition of a root-vortex and a
bound vorticity disk to complete the representation of the rotor and its wake. In 1912, Joukowski [94]
presented analytical results for the entire system and in the entire domain. Direct integration of
the Biot-Savart law was used, but the results were left in integral form and not explicitly written
in elliptic integral. The author nevertheless mentioned this possibility. Formulae for the axial in-
duction were derived for points in the vicinity of the cylinder surface. The bound vortex disk was
considered but the full velocity field was not computed. The author provided important results
for the induction in the rotor plane, the far field and the cylinder surface. Snel and Schepers [191,
p. 226] used numerical integration to include the contribution of the longitudinal component of
vorticity and the root vortex. Results from numerical integration of the influence of the vortex
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CHAPTER 1. CYLINDRICAL VORTEX MODEL FOR FINITE AND INFINITE TIP-SPEED RATIOS

cylinder, the bound vortex disk and the root vortex are found in the book of Burton et al. [35].
The assumptions of constant circulation and rigid wake envelope were also successfully relaxed.
Heyson and Katsoff [86] used a superposition of cylinders of uniform circulation to study rotors with
radially varying but azimuthally constant circulation. The ECN cylindrical differential equation
model [191, p. 240] includes the time-history of the wake vorticity distribution in the Biot-Savart
integration. The idea of superposition of vortex rings by Castles and de Leeuw was used by Øye
to study wake expansion and non-uniform wake convection velocity [152]. The effect of expansion
was studied using helical vortex filaments for rotors with finite and infinite number of blades by
the present author and his supervisor [22].
Results from vortex theory are often used to derive engineering models that can be implemented
in BEM codes. This is partly due to the existence of relations between the momentum and vortex
theories (see e.g. Glauert [71, p. 230], Burton et al. [35, p. 50-52], Johnson [93, p. 76] and the
following section). Several BEM code yaw models are for instance based on the derivations of
Coleman et al. (see e.g. Hansen [79, p. 98]). Recently, suggestions for using in a BEM code
the induced velocities found by numerical integration of the cylindrical wake were presented by
Crawford [54]. Sant [174] used the results of a free-wake lifting line code to derive BEM-compatible
engineering models.
The similarity of results obtained with the cylindrical vortex model compared to the momentum
theory (MT) of an actuator disk partially justifies the use of the model. The limitations and possible
inconsistencies of both the momentum and vortex theories should yet be borne in mind and the
reader is referred to the articles of van Kuik and Sørensen [214, 193] for further considerations.
Radial velocities through the vortex cylinder surface are present as a result of the absence of wake
expansion. Yet it was observed by Øye [152] that a fully resolved vortex system with wake expansion
provides results in the rotor plane which are consistent with the simplified vortex system presented.
This further justifies the application of the model.

1.2 Contribution and key results

Contributions It was chosen to investigate further the model of Joukowski consisting of: a
cylinder with longitudinal and tangential vorticity, a bound vortex disk and a root vortex (see
figure 1.1). The article consisted of the following contributions: the derivation of the induced
velocities from a bound vortex disk; the derivation of the induced velocities from the tangential
and longitudinal vorticity in a different way than in the current literature; the proof of annuli-
independence (used in Blade element theory and stream-tube analyses) using a superposition of
concentric cylindrical systems; and an illustration of the application of the model for the estimation
of velocity deficits upstream of a wind turbine.

Vortex model The cylindrical vortex model considered and the coordinate system used are shown
in figure 1.1. The vortex system represents a rotor with an infinite number of blades and its wake.
The total circulation of the rotor is constant and such that the circulation of each infinitesimal
blade is radially constant. The rotor operates at a finite tip-speed ratio. The incoming wind is
steady and uniform. The cylindrical wake doesn’t expand. The justification of the generation of
a closed vortex system behind an actuator disk is discussed by van Kuik [213]. If the tip-speed
ratio tends to infinity while the thrust remains constant, then the bound vorticity, and thereby also
the longitudinal vorticity and root vortex strength, tend to zero. In this case therefore the only
non-negligible component is the tangential vorticity.
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x

er(ψ)
eψ(ψ) ≡ eθ(ψ)

x = (r, θ, z) γt

y

z

x′ =
(R, θ′, z′)γl

ψ

γb Γr

Figure 1.1: Vortex model and coordinate system. The rotor is represented by a gray disk and the infinite
wake represented by dashes extends from z = 0 to +∞. The model consists of a root vortex, a right
semi-infinite vortex cylinder with tangential γt and longitudinal vorticity γl, and a bound vortex disk with
radial vorticity γb.

Induced velocities in the entire domain The different strengths of the root vortex, the bound
vorticity, the tangential and longitudinal vorticity are respectively:

Γr = −Γtot ez, γb(r) = Γtot

2πr er, γt = −Γtot

h
eψ, γl = Γtot

2πR ez, (1.1)
where Γtot is the total circulation of the rotor, R is the rotor radius, and h is the pitch of the
helical wake formed by the combination of the two tip-vorticity components. The notation u•,�
will refer to the •-component of the velocity induced by the vortex element �, where • ∈ {r, ψ, z}
and � ∈ {r, t, l, b}. The velocity field induced by the full vortex system is: ur = ur,t, uz = uz,t,
uψ = uψ,l + uψ,r + uψ,b. The expressions of the different components were obtained by direct
integration of the Biot-Savart law as:

ur(r, z) = − γt2π

√
R

r

[
2− k2(r, z)

k(r, z) K
(
k2(r, z)

)
− 2

k(r, z)E
(
k2(r, z)

)]
uz(r, z) = γt

2

[
R− r + |R− r|

2|R− r| + zk(r, z)
2π
√
rR

(
K
(
k2(r, z)

)
+ R− r
R+ r

Π
(
k2(r, 0), k2(r, z)

))]

uψ(r, z) =

−Γtot
/

4πr, r < R and z = 0 , or, r = R and z > 0
−Γtot

/
2πr, r < R and z > 0

0, otherwise
where E, K and Π are the complete elliptic integrals of the first, second and third kind respectively,
which elliptic parameter k is given by

k2(r, z) = m(r, z) = 4rR
(R+ r)2 + z2 , n1 = 2r

r +
√
r2 + z2

, n2 = 2r
r −
√
r2 + z2

. (1.2)

and where n1 and n2 are used below. The different components forming the tangential velocity are:

uψ,l(r, z) = γl
2
R

r

[
r −R+ |R− r|

2|R− r| + zk(r, z)
2π
√
rR

(
K
(
k2(r, z)

)
− R− r
R+ r

Π
(
k2(r, 0), k2(r, z)

))]
(1.3)

uψ,r(r, z) = −Γtot

4πr

[
1 + z√

r2 + z2

]
(1.4)

uψ,b(r, z) = Γtot

4π

{1
r

[
z√

r2 + z2
− |z|

z

]
− 1
πz

√
r

R

z2

r2
√
m [K(m) + T1 Π(n1,m)− T2 Π(n2,m)]

}
(1.5)

T1 =
(√
r2 + z2 − r

)
(r +R)− z2

2z2 , T2 =
(√
r2 + z2 + r

) (√
r2 + z2 +R

)
2z2 , (1.6)
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The above results were presented in [23]. The velocity induced by the tangential vorticity, the
longitudinal vorticity and the bound vortex disk are respectively studied in details in Appendix A,
section A.3.3, and section A.4. The velocity field induced by the root-vortex is directly obtained
from the Biot-Savart formula for a semi-infinite vortex filament [23].

Combined influence and rotor inductions On the rotor disk, the bound vorticity has no
induction and the combined influence of all components is such that uz = −γt2 and uψ(r) = −Γtot

4πr .
From geometrical arguments, the induced velocities at the rotor plane are half the ones that would
be obtained if the cylindrical system was infinite, i.e. half the induced values in the far-wake.
This result is consistent with results from momentum theory of an actuator disk (see e.g. [71]).
Introducing Ω the rotational speed of the actuator disk, U0 the incoming free stream, a the axial
induction factor positive along ez and a′ the tangential induction factor negative along eψ, the
vortex system leads:

aU0 = −γt2 , a′Ωr = Γtot

4πr , (1.7)

Large tip-speed ratio - Relation to 1D MT Under the assumption of large tip-speed ratio,
the helix pitch corresponds to the distance travelled by the wake vorticity in one rotor rotation.
Using the convection velocity Vc of the vortex cylinder sheet in the far-wake (assumption used by
Øye [152]) the pitch is then: h = 2πVc/Ω = 2π(U0+γt/2)/Ω. Inserting the pitch into the expression
of γt leads to:

k = 4−γt2

[
1−

(
−γt2

)]
, (1.8)

where k = ΩΓtot/πU
2
0 and γt = γt/U0. By consideration of the Kutta-Joukowski relation it can be

shown that k is equal to the local and total thrust coefficients under the assumption of large tip-speed
ratio (see e.g. chapter 2, [26, 67] and Appendix C). The vortex theory result from equation (1.8)
is then identical to the momentum theory analysis CT = 4a(1− a). Identical results are also found
when considering the power coefficient as obtained by both theories [67]. Solving equation (1.8) for
γt leads to γt = U0

(
−1 +

√
1− k

)
. The helix pitch may then be written: h = πR[1 +

√
1− k]/λ.

This relation was obtained using 1D momentum theory in a previous work [28], and is closely
related to the relation obtained by Okulov and Sørensen [151] in the context of optimal circulation.

Large tip-speed ratio - Relation to 2D MT - Superposition of cylindrical vortex systems
Glauert [71, p. 230] pointed out the existence of a link between vortex theory and 2D momentum
theory. A formal derivation is presented in the article corresponding to the current section [23],
while the scope of this result is further studied in chapter 2 and [26]. In [23] it is shown that a
vortex theory analysis can obtain the independence of annuli which is implied by Blade Element
Theory and stream-tube analysis, in the case of an infinite tip-speed ratio. This result is not
presented here since it is in fact a particular case of the more general case that will be presented in
chapter 2.

Application to the upstream velocity reduction The vortex system provides more informa-
tion than the momentum theory since the entire velocity field is known. In particular, the velocity
on the disk axis is:

Uz(r = 0, z) = U0

[
1− a

(
1 + z/R√

1 + (z/R)2

)]
. (1.9)

This model reveals for instance that the wind speed measured at the recommended distance 5R [90]
in front of a wind turbine operating at the canonical induction 1/3 is 0.99U0. Further improvement
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can be obtained using a superposition of vortex cylinders and consideration of the entire velocity
field as will be shown in the following chapter.

1.3 Conclusions
The vortex system presented in this study can be used for simple models of wind turbines with
infinite number of blades and finite tip-speed ratios. The main analytical contribution of this
study consisted of the derivation of induced velocity formulae for the bound vortex disk. Also, a
novel approach based on direct integration was presented to derive the inductions of a right vortex
cylinder. The results obtained were consistent with existing work on the vortex cylinder. The
study of the combined contributions from the longitudinal and bound vorticity validated the bound
vorticity formulae derived. Relations between momentum theory and vortex theory were presented
to justify the implementation in BEM codes of engineering models based on vortex theory results.
In the case of infinite tip-speed ratio, it was shown that a superposition of concentric cylindrical
systems predicts the independence of annuli which is assumed in Blade element theory and stream-
tube analyses.

7
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Chapter2
Superposition of cylindrical models - Effect
of wake rotation
This chapter is based on the following publication: ‘Superposition of vortex cylinders for steady
and unsteady simulation of rotors of finite tip-speed ratio’ [26]. At the time of writing, the article
is under review. Details of derivation are provided in Appendix E, and the Kutta-Joukowski loads
for an actuator disk are defined in Appendix C.

Prologue The model presented in chapter 1 assumes a constant circulation along each infinitesi-
mal blade. This assumption can be relaxed using a superposition of concentric cylindrical models.
The case of infinite tip-speed ratio is a limiting case of the finite tip-speed ratio case but the two
situations will be seen to have different implications.

2.1 Context
Infinite tip-speed ratio Only the tangential vorticity of the cylindrical vortex model remains
under the assumption of infinite tip-speed ratios. A superposition of such models under this as-
sumption was presented in [23] as mentioned in the previous chapter. It will be seen in chapter 4
that the assumption of infinite tip-speed ratio was for instance used by Coleman et al. [46] in 1945
to study the wake of a yawed rotor. In 1956, Heyson and Katsoff [86] used a concentric superposi-
tion of cylinders to study yawed rotors with radially varying but azimuthally constant circulation.
Numerical integration had to be performed to obtain the full velocity field from a single cylinder.
Results of the continuous superposition of vortex cylinders at infinite tip-speed ratio are found in
integral form in the books of Johnson [92, p. 80], [93, p. 76].

Finite tip-speed ratio The actuator disk of finite tip-speed ratio was studied in details by
Conway [51, 47]. Conway derived expression for an arbitrary radial loading using integral forms.
Several of the main assumptions of the cylindrical vortex model have been successfully relaxed in the
case of finite tip-speed ratio. In 1929, Goldstein [72] solved the potential flow around a rigid helical
surface of vorticity, obtaining the circulation distribution of an “optimal” rotor with a finite number
of blades. In this context, the assumptions of infinite number of blades and constant circulation are
relaxed simultaneously but the result only applies to the specific “optimal” configuration. Relaxing
the assumption of infinite number of blades, leads to the helical vortex system of Joukowski (see e.g.
chapter 3 and Appendix F). Wrench [223] derived in 1957 approximate formulae for the velocities
induced by helical filaments. A model using a superposition of helical filaments allows for a radially
varying circulation: This concept was for instance used to study tip-losses [22], or study the optimal
rotor configuration [151]. Yet, the definition of the helical pitch becomes a crucial parameter of
the model [147]. The relation between momentum theory and 2D vortex theory mentioned by
Glauert [71, p. 230] (see also Burton et al. [35, p. 52], Johnson [93, p. 76]) is a powerful result,
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that does not hold in the case of finite tip-speed ratio. The importance of the pressure drop due
to wake rotation was revealed using momentum analysis by e.g. Sørensen and van Kuik [193], and
using vortex theory by Øye in the work of Madsen et al. [126]. Corrections to BEM algorithm to
include this pressure drop were suggested based on comparisons with actuator disk simulations by
Madsen et al. [123].

2.2 Contribution and key results
Contributions A superposition of vortex cylinder models in the case of (in)finite tip-speed ratio
was not presented in the literature to the authors knowledge. This study led to the following
contributions: the identification of the pressure drop due to wake rotation from this system; the
determination of the pitch required to form a consistent vortex system; the extension of the model
to a continuous superposition of cylinders; the identification of the similarity between the BEM
algorithm and the cylindrical vortex model and the equivalence in the case of infinite tip-speed
ratio; an indication of how to correct BEM to include the effect of wake rotation according to the
obtained result; the extension of the model to high-thrust case; and an illustration of application of
the method to determine the velocity field in the entire domain, in particular upstream of a wind
turbine. The model was also extended to unsteady simulations (see chapter 8).

Introduction Stream-tube Theory (ST) will refer to momentum analyses that assume radial
independence of the stream-tubes (for others see e.g. [218]). The local thrust and torque coefficients
found using ST are [79]: Ct,ST = 4a(r) [1− a(r)], Cq,ST = 4a(r) [1− a(r)] a′(r)λr, where λr ≡ Ωr

U0
.

The BEM algorithm relates Blade Element Theory (BET) and ST results using three links. The
1st link uses a velocity triangle (see e.g. [219]) to relate the azimuthally averaged velocities from
ST to the velocities on the blade:

4a′(r)[1 + a′(r)] = 4a(r)[1− a(r)] 1
λ2
r

⇔ ∃ φ ∈ R,
[1− a(r)]

[1 + a′(r)]λr
= a′(r)λr

a(r) = tanφ (2.1)

Both parts of the second equation should be satisfied. It can be solved for a′ (see e.g. [82, p.26]) as:
a′ = 1

2

[√
1 + 4a(1−a)

λ2
r
− 1
]
. Yet, a different expression for a′ is often used in BEM implementations

(see e.g. [79, p. 53]). The 2nd and 3rd links relate the local thrust and torque coefficients from both
theories. It is noted that the BET and the Kutta-Joukowski (KJ) loads are identical when the drag
term is omitted in the loads. Several authors [219, 59] argue that this is indeed the proper way to
derive the BEM algorithm. The KJ loads for an actuator disk are (see Appendix C):

Ct,KJ(r) = k(r)[1 + a′(r)], Cq,KJ(r) = k(r)
λr

[1− a(r)], Cp,KJ(r) = k(r)[1− a(r)], k(r) = ΩΓ(r)
πU2

0
(2.2)

Model and assumptions The support of vorticity around a rotor will be assumed to reduce
to a superposition of concentric elementary cylindrical vortex systems. The elementary cylindrical
system was presented in chapter 1, from which the notations are further adopted. The different
components of the elementary vortex system are shown in figure 2.1a and the superposition is
illustrated in figure 2.1b. A superposition of elementary systems allows for a radially varying
circulation along the span of the blade.

Discrete superposition of cylindrical vortex systems The circulation is assumed to be
piecewise continuous with the radius. The i-th circulation change, occurring at r = Ri, is associated
with an elementary vortex system extending from R0 = 0 to Ri of intensity Γ̃i = Γi − Γi+1. The
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x

y

z

γt
γl

Γr
ψ

r

γb

(a) (b)
Figure 2.1: Sketch and notations for the vortex cylinder model. (a) Elementary model consisting of: a root
vortex, a bound vortex disk, and a cylindrical vorticity surface with tangential and longitudinal components.
(b) Superposition of concentric elementary models.

last cylinder, indexed n, extends radially from 0 to R. For convenience the ghost index n + 1 is
introduced such that Γn+1 = 0. The tangential vorticity of the cylinder i is γi = −Γ̃i/hi, where
hi is the local helical pitch to be determined to form a consistent vortex system. The axial and
tangential inductions in the rotor plane are directly obtained from the properties of an elementary
vortex cylinder. For Ri−1 < r < Ri the induction factors are:

ai = −
n∑
j=i

γj
2U0

, a′i(r) = −
n∑
j=1

Γ̃j
4πΩr2 = − Γi

4πΩr2 (2.3)

It is seen that the tangential induction is only a function of the circulation of the closest surrounding
cylinder. The axial induction requires the solving of a system for the tangential vorticity. Indeed,
the tangential vorticity depends on the helical pitch, which depends on the far-wake convection
velocity, which in turn depends on the tangential vorticity. The solving of the system, detailed in
section E.5, leads to:

ai = 1
2 −

1
2

√
1− Ct,i(Ri) + Ct,rot,i ⇒ Ct,i(Ri) = 4ai(1− ai) + Ct,rot,i (2.4)

with

Ct,i(r) ≡ ki
(

1 + ki
4λ2

r

)
, ki ≡

ΩΓi
πU2

0
, Ct,rot,i =

∑
j>=i+1

(
kj
2

)2
[

1
λ2
Rj−1

− 1
λ2
Rj

]
, (2.5)

From [26, 126], the term Ct,rot,i can be interpreted as the thrust coefficient of the force exerted on
the disk by the wake rotation of the surrounding cylinders. With equation (2.3) and equation (2.4),
a′i and ai are known for a given distribution of ki, and the thrust and power coefficients over the
entire radius can be determined according to the KJ relation from equation (2.2):

Ct,KJ(Ri−1 < r < Ri) = ki

(
1 + ki

4λ2
r

)
, Cp,KJ(Ri−1 < r < Ri) = ki (1− ai) (2.6)

Continuous distribution of cylinders The results from the discrete superposition are extended
to the continuous case by considering infinitesimal cylinders of extent dr trailing a circulation
Γ̃ = dΓ/dr. The thrust coefficient for a continuous superposition of cylinders is then:

Ct,KJ(r) ≡ k(r)
(

1 + k(r)
4λ2

r

)
= 4a(r)[1− a(r)] + Ct,rot(r), with Ct,rot = 2

ˆ R

r

u2
ψ

U2
0

dr

r
(2.7)
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with k(r) = ΩΓ
πU2

0
. The power coefficient can be expressed in any of the following forms:

Cp,KJ(r) ≡ k(r) [1− a(r)] = Ct,KJ(r)
1 + a′

[1− a(r)] = 4a(r) [1− a(r)]2 1
1 + a′(r) + Ct,rot(r)

1− a(r)
1 + a′(r)

(2.8)
The torque coefficient can be directly obtained from the power coefficient:

Cq,KJ(r) ≡ Cp,KJ(r)
λr

= k(r)
λr

[1− a(r)] (2.9)

The axial and tangential inductions for a continuous distribution of cylinders are obtained as:

a(r) = 1
2 −

1
2

√
1− Ct,eff(r) , a′(r) = Γ(r)

4πΩr2 with: Ct,eff = Ct,KJ − Ct,rot (2.10)
It is seen that the axial induction at a given location is a function of the induction of all the
surrounding cylinders. In the infinite tip-speed ratio case though (Ct,rot = 0), only the closest
surrounding cylinder contributes and the annuli-independence is satisfied.

Vortex cylinder model and BEM algorithm The definition of a′ from equation (2.10) can
be inserted into the KJ torque coefficient given in equation (2.2), leading to: Cq,KJ(r) = Γ(r)

πrU0
[1−

a(r)] = 4Ωr
U0
a′(r)[1 − a(r)] which is also equal to Cq,ST. On the other hand, Ct,KJ(r) contains an

additional term, namely Ct,rot compared to the one obtained from ST . If the tip-speed ratio is
infinite, then Ct,rot is zero and the thrust coefficients from both theories are equal. The orthogonality
condition given in equation (2.1) becomes irrelevant when the tip-speed ratio is infinite.
For an infinite tip-speed ratio, the above showed that the BEM algorithm and the vortex cylinder
models are equivalent, provided: an infinite number of blades, an azimuthally constant loading and
the absence of drag terms in the computation of the induction coefficients. In the finite tip-speed
ratio case, the vortex cylinder model with proper system closure revealed that the traditional BEM
implementation that uses only the ST thrust lacks the loading from the wake rotation and assumes
erroneously that annuli are independent.
The singularity in Ct,rot at the root can easily be avoided using a circulation that smoothly drops
to zero towards the root. The current study reveals how a BEM implementation should include
the effect of wake rotation: The thrust and axial induction should be computed according to
equation (2.7) and equation (2.10) respectively. This implementation is then different than the one
suggested by Madsen [123].

Momentum breakdown - Correction for high thrust Equation (2.10) is valid as long as the
effective Ct is below unity. Drawing an analogy with Spera’s correction [79], this equation can be
modified as [26]:

aeff = Ct,eff − 4a2
c

4 (1− 2ac)
(with ac chosen as 0.34 in [79]) (2.11)

Results An iterative vortex cylinder code using tabulated profile data is implemented similar to
a BEM code. The steps required for the calculation of the helical pitches are given in section E.7.
The Risø-10MW reference rotor [227] is used to compare different algorithms. Results from the
BEM code and the vortex cylinder (VC) code are shown in figure 2.2. The operating conditions are:
U0 = 10 m/s, λ = 7.5, CT = 0.83 and a zero pitch angle. It is possible to set up an erroneous VC
model equivalent to a BEM implementation (see section E.6 or [26]). The equivalence between the
two codes is confirmed in the numerical implementation (BEM and VC-erroneous). Discrepancies
between the BEM code and the proper VC model increases towards the root where the thrust due to
wake rotation has a larger influence. This is expected for the axial induction but also the tangential
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induction due to iterative nature of the algorithm: a′ = f(Γ) = f(a, a′, · · · ). The discrepancies will
increase for lower values of the tip-speed ratio where the relative wake rotation increases.
The curve labelled ’VC-pitch’ does not use the pitch determined by the closure of the system.
Instead it uses the velocity triangle behind the blade to assess the local pitch as: h = 2πU0(1 −
a)/Ω(1 + 2a′). This formulation was used in a previous work [22] to determine the pitch of helical
vortex filaments for a model similar to the current one but defined for a finite number of blades.
From the current study it appears that using this velocity triangle introduces a large error. This
error is expected to be smaller for simulations at low thrust coefficients.
The VC version offers the advantage of providing the velocity field in the entire domain and not
only in the rotor plane. This is illustrated in figure 2.2.

0 0.2 0.4 0.6 0.8 1
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

r/R [−]

a
 [

−
]

 

 

   

BEM

VC

VC − erroneous

VC − pitch

−1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

z/R [−]

r/
R

 [
−

]

0
.1

0
.2

0
.3

0
.4

0
.5 0.6

0

0.
1 0

   

Figure 2.2: Axial inductions obtained for the DTU-10MW rotor [227] at a moderate tip-speed ratio λ = 7.5.
Left: Simulations from BEM and Vortex cylinder (VC). Right: Contours computed using a superposition
of 100 cylinders. Due to the absence of wake expansion results for z > 0 and r > R are likely to differ from
actutor disk simulations.

2.3 Conclusions
A vortex cylinder model was studied under the assumptions of constant circulation, infinite number
of blades, but finite tip speed ratio. The relations between the vortex intensities and the rotor
performance parameters required to form a consistent system were provided. The model was
extended for radially varying circulation using a superposition of elementary systems. Relations to
ensure the overall consistency of the model were also derived. Using the Kutta-Joukowski relation
to relate to rotor loads, it was shown that this model was strongly related to the BEM algorithm.
The additional term present in the vortex cylinder model was identified to be the thrust associated
with the pressure drop occurring due to the wake rotation. This contribution can easily be added
to a BEM algorithm and the current study reveals in which expressions the thrust due to wake
rotation should be added. It was possible to extend the vortex cylinder model to cases of large
local thrust coefficient using the empirical Spera correction. The analytical formulae available for
the system make it possible to compute the velocity field in the entire domain, as opposed to BEM
computations which are limited to the rotor plane and far-wake. The relaxation of the azimuthally
constant circulation is a great challenge for the vortex cylinder model. The relaxation of the
assumption of infinite number of blades can easily be done using the analytical formulae of semi-
helical filaments. This will be the topic of chapter 3. Future work will focus on the comparisons of
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the vortex cylinder model with results from actuator disk and BEM codes using Madsen’s correction
for the effect of wake rotation.
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Chapter3
Helical vortex model applied to tip-losses
This chapter is based on the following publication: ‘Development of new tip-loss corrections based
on vortex theory and vortex methods’ [22].

Prologue The cylindrical vortex wake model presented in chapter 1 applies to a rotor with an
infinite number of blades. When the number of blades is finite the model for the rotor and its wake
consists in: lifting lines of constant circulation, a root vortex and helical filaments trailed from the
tip of each blade. This helical vortex wake model is also attributed to the work of Joukowski (see [94]
and Appendix F). It should be noted that if the helices are not rigid the system is unconditionally
unstable for all pitch values [151]. The induced velocities from a helical vortex are detailed in
Appendix B. Similar to the superposition of vortex cylinders done in chapter 2, a superposition
of helical filaments is here applied. Semi-analytical formulae and numerical studies are used to
investigate the effect of tip-losses. Further applications of the model in the context of optimal
circulation are given in Appendix D where formulae for wake expansions are also given.

3.1 Introduction and Context
Tip-losses commonly refer to kinematic and/or dynamic differences between a two-dimensional and
a three dimensional configuration of a lifting device. The main source of these differences for a wing
of finite span or for a rotating device of finite number of blades is the circulation flow driven by
the pressure equalization which arises at the tip of the lifting device. Prandtl used vortex theory
analysis to assess the proportion of these losses for both a wing [162] and a propeller blade [161]
at the beginning of the 20th century. The latter study was introduced as a correction factor to
be applied to Betz’s optimal circulation [16] extending the applicability of Betz’s result from an
infinite to a finite number of blades. Betz optimal circulation is obtained from a far-wake consisting
of a infinitely dense system of helical vortex sheets moving as a rigid-body translation. Prandtl’s
tip-loss factor corresponds to an approximation of the ratio between the total blade circulation ΓB
and the circulation for an infinite number of blades Γ∞ for the optimal Betz rotor. Prandtl’s model
considers the axi-symmetric wake flow about a series of semi-infinite rigid lines as an approximation
to the system of finite helical vortex sheets. The exact circulation distribution ΓB corresponding
to the system of finite helical vortex sheets was obtained by Goldstein in 1929 [72]. Goldstein’s
tip-loss factor can be obtained from this solution [20]. Glauert [71] suggested a modification to
Prandtl’s tip-loss factor for a convenient numerical implementation and it is his model which has
been retained to this day in most BEM codes. A generalization of Prandtl’s tip-loss factor and its
different implementations can be found in [28, 20]
A superposition of semi-infinite helical filaments can be used to represent the optimal helical wake
(see e.g. Okulov et al. [149]) or a more general wake shape. The velocity potential corresponding to
a system of B equally-spaced infinite helices was derived by Kawada [97]. Exact analytical formulae
for the velocity field induced involve modified Bessel functions (see e.g. [81]). Lerbs [115], derived
an approximation of Kawada’s expression. Later, Wrench [223] added a correction term to improve
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the accuracy of this approximation. The velocity field at the rotor plane from a superposition of
semi-infinite helical filaments can be obtained with great accuracy with Wrench’s formula.
Recently, a free wake lifting-line code (see e.g. [28], [27]) was used to derive tip-loss corrections
accounting for wake expansion, roll-up and distortion, and applicable to a wide range of operation
conditions.

3.2 Contribution and key results
Contributions This study made use of analytical vortex results to derive a new analytical tip-
loss factor, derive various numerical counterparts and study the influence of wake expansion on
tip-losses. The study led to the following contributions: the derivation of a new analytical tip-loss
factor more representative of the wake shape; different definitions of the tip-loss factor; three-vortex
theory results; the link between the formulae of Wrench and the ones of Okulov; the application of
the Theodorsen wake-expansion function; the study of the effect of wake-expansion on tip-losses.

Introduction - Tip-loss factors and vortex theory Prandtl’s tip-loss factor FΓ = ΓB/Γ∞
can be interpreted as a correction term applied to induction factors, Fa = a∞/aB , and Fa′ =
a′∞/a

′
B , where the subscript ∞ refers to the induction value for an infinite number of blades, and

the subscript B refers to the value on the blade. This definition will be called the natural tip-
loss factor. In most BEM codes, the tip-loss factor represents the proportion in which the axial
induction at the blades differs from the momentum theory value. The 2D momentum value is the
azimuthally averaged value written 〈 • 〉θ. The planar tip-loss factor is defined as F〈a〉 = 〈a〉θ/aB ,
and F〈a′〉 = 〈a′〉θ/a′B . , consistent with e.g. [185, 79]. In the case of an axi-symmetric wake and
by assuming that the wake shape is the same for any number of blades, the natural tip-loss factor
and the planar tip-loss factors are equal [22]. These assumptions are satisfied in particular in the
case of a non-expanding wake consisting in different trailed helical filaments (see figure 3.1). It

(a)

Γt Γt/BControl
Points

(b)

Figure 3.1: Planar and natural tip-loss factor computed using a large number of control points (a) or blades
(b).

was also shown that the azimuthal average of the induced velocities on a plane perpendicular to
the helix axis and from which a semi-infinite helix is emitted is half the value found for an infinite
helix.

Elementary helical vortex model The elementary helical vortex model consists of B straight
lifting-lines of constant circulation Γ representing the blades, B regular semi-infinite helical vortex
filament of pitch h and circulation Γ trailed at the tip of each blade, and a root vortex of intensity
−BΓ. The induced velocities from the B helix on the rotor plane are obtained from the formulae of
Wrench. The formulae can be identically obtained using a summation of the approximate solution
of Okulov [145] (see Appendix B).
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Four vortex models - Radially varying circulation The model consisting of a superposition
of elementary helical vortex model will be referred to as the analytical vortex wake model since
the induced velocities in the rotor plane are indeed obtained using closed form formulae. The 2nd
model is a numerical analog to the analytical helical wake model which include wake expansion.
In a very simple fashion, an expansion factor as function of the downstream location is applied to
the trailed vortex filament. Different expansion factors have been used including the theoretical
one from Theodorsen [203], illustrated in figure 3.2. This method requires the determination of far
wake parameters, for which an iterative procedure along the same line as the methodology presented
in [150] and [218] was used. The helix pitches for the 1st and 2nd models are computed from the
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Figure 3.2: Wake Expansion factor computed using Theodorsen’s theory for different far wake pitch l and
a far wake convection velocity w = 0.4. The thrust coefficient in the far-wake ct is determined according
to the far wake parameters and Goldstein’s circulation [203].

velocity triangle immediately downstream of the blade (see figure 3.3) as:

h(r) ≡ 2πr tan ε(r) = 2πU0(1− a(r))
Ω(1 + 2a′(r)) (3.1)

The 3rd model is the numerical prescribed wake model from Gaunaa [66]. It includes wake expansion

Γt Γt

(a) (b) (c)

Ω× r dt

2a′Ωr dt
U0(1− a) dt

ε

Figure 3.3: Trailed vorticity path for a one-bladed rotor. Four Lagrangian particles (of different colors) that
passed through the tip of the blade at four different times are plotted. The line joining these particles at a
given time is the trailed vorticity line. (a) Without tangential induction - (b) With tangential induction -
(c) Helix angle.

and distortion with varying pitches along the wake and different convection velocities and rotational
velocities of the vortex elements. This model was established based on the results from free wake
computations. The 4th model consists of the free-wake vortex code as described in chapter 9
(Configuration 2-1, see section 9.3).

17



CHAPTER 3. HELICAL VORTEX MODEL APPLIED TO TIP-LOSSES

New tip-loss factor based on the analytical vortex wake model At a given radial position
on the blade, the tip-loss is the ratio between the total induced velocity from the helical vortex
filaments of the infinitely-bladed case to the induced velocity of the finite case:

F (r) = Fa(r) =
lim

Bl→∞

´ R
0 uz,Bl (r, r0, h(r0),Γ(r0)/Bl) dr0

´ R
0 uz,B (r, r0, h(r0),Γ(r0)) dr0

=
´ R

0 Γ(r0)/2h(r0)dr0´ R
0 uz,B (r, r0, h(r0),Γ(r0)) dr0

(3.2)

where uz,B , given in [22] and equation (B.7), is the sum of induced velocities from B equally
azimuthally-spaced helical filaments emitted at the radial position r0. For each radial position, the
proper circulation Γ and helical pitch h = 2πl as defined by equation (3.1) is used. In practice
the flow angle is known at finite positions and the integral is replaced by a summation. The limit
in equation (3.2) was removed using vortex cylinder theory results. The tip-loss factor was given
using the natural definition but the planar definition could be used indifferently in this context.

Results The different vortex wake models were used to determine the tip-loss factor from two
different prescribed circulation shapes and different operating conditions. When the analytical
vortex wake model is applied, the tip-loss factor from equation (3.2) is directly obtained. Results
were reported in a table [22] and are commented below. A variable referred to as the lost area,
noted AF , is introduced. The lost area is the difference between the area of the unit-square and
the area below the tip-loss curve F•(r/R). A large lost area signifies large tip-losses.
All models captured the trend that tip-losses are reduced (AF decreases) with increasing tip-speed
ratio and increasing CT . This trend can be explained by the increased proximity of the vortex
sheets occurring with the increase of these parameters. Indeed, using 1D momentum theory (or an
elementary cylindrical model) under the assumption of high tip-speed ratio (a′ = 0) the proximity
of the sheets is hB = πR

λB

[
1 +
√

1− CT
]
[28].

Comparisons between BEM code and free-wake code results give the same conclusions as a previous
study [28]: The tip-loss factors obtained with Glauert’s formulation often have a larger lost area
than the one obtained by the free-wake code. Yet, since the nature of the two codes is different
the comparison can be quite abstruse. On the contrary, comparisons amongst vortex models are
justified and offer great potential. From the table given in [22], it was observed that the lost
area is always reduced when going from the simplest model to the more advanced free-wake model
suggesting that both expansion and distortion of the wake tend to decrease the proportion of tip-
losses. The sole effect of expansion on the tip-loss function is illustrated on the right of figure 3.4. In
both cases, the prescribed wake models with expansion show a lower lost area. Gaunaa’s advanced
prescribed wake model gave similar tip-loss functions than the simpler helical wake model with
Theodorsen’s wake expansion, showing coherence between the expansion models and suggesting
that the expansion model is more influential than the distortion model for the study of tip-losses.

3.3 Conclusions
Distinctions and clarifications between different possible definitions of tip-losses have been pre-
sented. By superposition of semi-infinite helical filaments whose pitches depend on the velocity
triangle after the rotor, a tip-loss factor can be computed using analytical formulae. This new
analytical tip-loss factor is easily implemented in a BEM code. The method is physically more
advanced than the one originally presented by Prandtl. The two analytical methods give coherent
results. The expansion factor from Theodorsen has been successfully applied to wind energy for
the first time. The influence of wake expansion on the tip-loss factor has been studied with vortex
methods. It was seen that the wake expansion has a greater influence on the tip-losses than the
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Figure 3.4: Tip-loss factors for different tip-speed ratios and for CT = 0.6. Left: Comparison of the two
analytical tip-loss factors. Right: Effect of expansion. The darker curve corresponds to λ = 3 and the
lighter one to λ = 12.

wake distortion. Despite the simplicity of the prescribed wake model used, it was possible to cap-
ture the fact that wake expansion reduces tip-losses. This result was confirmed by using free-wake
simulations. Development of advanced numerical methods and accurate measurements of flow in
the rotor plane will help reveal which of the methods assesses best the phenomenon of tip-losses.

Epilogue In a unsteady simulation where each blade have a different circulation, the tip-loss
factor can still be independently determined for each blade using equation (3.2). The tip-loss factor
of each blade is then obtained as if each blade was part of a system where all B blades had the
same circulation. This is also the approach applied when using Glauert’s tip-loss factor. A more
representative value of the tip-loss can be obtained using the planar definition of the tip-loss factor.

Fa(r) =
〈
∑B
k=1
´ R

0 uz,1 (r, r0, hk(r0),Γk(r0)) dr0〉θ∑B
k=1
´ R

0 uz,1 (r, r0, hk(r0),Γk(r0)) dr0
(3.3)

The formulae of the pitch obtained from the superposition of vortex cylinders presented in chapter 2
should preferably be used instead of the one from the velocity triangle (i.e. equation (3.1)). This
choice would potentially improve the new-tip-loss model at low tip-speed ratios.
Another effect occurring at the tip of a blade which affects the inflow and thus the performance
of the airfoil is the “de-cambering” effect. This effect was for instance studied by Sørensen et al.
using vortex based tools and linear theory [195]. A tip-loss factor accounting for this specific effect
is suggested by the authors.
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Chapter4
Yaw-modeling using a skewed vortex
cylinder model

This chapter is based on the following publication: ‘Cylindrical vortex wake model: skewed cylinder,
application to yawed or tilted rotors’ [24].

Prologue The cylindrical vortex wake model presented in chapter 1 for the case of uniform inflow
is extended to the case of yawed inflow. The bound vorticity is assumed to be as before but the
vortex cylinder and the root vortex are skewed with respect to the normal of the rotor disk. Closed
form formulae for the induced velocities only exist for a limited part of the domain. Semi-empirical
models need to be established in particular to obtain the velocity at the rotor disk. Results from
this analysis will be applied in chapter 5 to derive a BEM yaw model. The novelty of this approach
is that the assumption of infinite tip-speed ratio is relaxed. Detailed derivations are provided in
section A.5.

4.1 Introduction and Context
The yawed configuration of a wind turbine is similar to the case of an helicopter in forward-flight
so that wind turbine aerodynamics benefit from the extensive study of the latter case. Glauert’s
study of the “autogyro concept” in 1926 [70] is among the earliest investigations. Glauert used a
lifting line analysis where the rotor is assumed highly yawed and is modelled as a circular wing.
The induced velocity normal to the rotor can be decomposed into a constant component and a
component that varies linearly with the radius and sinusoidally with the azimuth angle. This form
can be regarded as the zeroth and first sinusoidal component of a Fourier decomposition. The
amplitude of the zeroth component corresponds to the induction value in the non-yawed case. The
component attributed to yaw is referred to as the flow expansion function in the book of Burton et
al. [34, p. 108]. Further refinements of the model may be obtained by adding higher harmonics of sine
and cosine terms. The determination of the Fourier components may be done by various methods,
for instance: experimentally [180] or using vortex analyses similar to the one of Coleman [46]. To
this day, the work of Glauert and Coleman form the basis of yaw-model implementations for Blade
Element Momentum(BEM) codes, see e.g. Hansen [79, p. 98].
In 1945, Coleman et al. [46] used a skewed cylindrical wake to study yawed rotors. They restricted
their study to the component of vorticity tangential to the rotor. They derived far-wake relations
and computed the normal induced velocity along the horizontal diameter of the rotor analytically.
In 1954, Castles and de Leeuw computed the normal induced velocity at any point by modeling
the cylinder as vortex rings and using a solid angle approximation of the far-wake [38]. Two years
later, Castles and Durham improved the method by integrating the Biot-Savart law analytically
along the axis and numerically over the azimuth [39].
The idea of Castles and de Leeuw consisting in modeling the vortex cylinder with rings was also
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used by Øye to find a polynomial fit to the flow expansion factor [153]. This approach was also
followed to compare the model with Computational Fluid Dynamic (CFD) simulations of wind
turbines in yaw [206] and tilt configurations [75].
Vortex models of higher complexity followed the work of Coleman and his co-authors. In a combined
publication by Heyson and Katsoff [86], Heyson used a superposition of cylinders to study yawed
rotors with radially-varying but azimuthally-constant circulation [86]. Heyson later compared his
results with experiments [87] finding good agreement in the near-wake, but decreasing accuracy in
the far-wake due to wake distortion. Chaney et al. [41] used a superposition of two skewed cylinders
to model the stalled inner-part of the rotor. Despite its simplicity the cylindrical vortex model with
a step circulation was shown to reveal important features that other models would not capture.
The case of a sinusoidal variation of the circulation with azimuth was studied by Drees [60] who
found an approximate formulation for the first sine and cosine harmonics of the normal induced
velocity. The effect of expansion was studied for a skewed rotor with a cylindrical wake by Chaney
et al. [40]
Recently, suggestions for using in a BEM code the induced velocities found by numerical integration
of the skewed cylindrical wake were presented by McWilliam et al. [134]. More advanced vortex
wake models imply the prescription of complex wake geometries and the numerical integration of
the Biot-Savart law as for example in the work of Egolf and Landgrebe [62]. Haans [77] used an
extensive amount of experimental data to determine with precision the position and intensity of
the vortex system in axial and yawed conditions. The author then decomposed the wake system
to investigate the influence of the individual components of the wake such as the tip and root
vortex or the shed vorticity. The final level of wake complexity is reached using free-wake methods.
Sant [174] used the results of a free-wake lifting line code to develop BEM-compatible engineering
models for wind turbine in yawed configuration.
In the above review, only the work related to vortex theory was presented since it is the method
which will be used in this chapter. A great amount of work was done for yawed rotor using
acceleration potential methods [129, 210], which led to the development of the Pitt and Peters
model [159]. More detailed reviews may be found in the literature covering helicopters in forward-
flight [113, 92] and wind turbines in yawed condition [191, 34].

4.2 Key results and contributions
Contributions This study focused on the extension of the work of Castles et al. and Coleman
et al. in order to relax the assumption of infinite tip-speed ratio used in their studies. The study of
the skewed cylinder model led to the following contributions: the derivation of all the components
of the velocity field induced by the tangential vorticity (Castles et al. focused on the z-component);
the justification of the use of the engineering model for the tangential vorticity presented in [35];
the derivation of semi-analytical formulae and engineering model for the velocity induced by the
longitudinal vorticity; the derivation of far-wake properties for the longitudinal vorticity, namely
that the velocity field is zero inside the cylinder ellipse and that the streamlines are confocal ellipses.

Presentation of the vortex wake model The vortex model consists of the same components
as the right cylinder model presented in chapter 1 except that the wake direction vector forms
an angle χ with the z-axis. The notation of chapter 1 are adopted. The different components
are represented in figure 4.1, and the coordinate system is shown in figure 4.2. The angle χ is
referred to as the skew angle. It is equal to zero in non-yawed condition and is usually higher than
the yaw angle. Relations between the yaw angle and the skew angle may be found for instance
in [153, 34, 91]. The different strengths of the root vortex, the bound vorticity, the tangential and

24



CHAPTER 4. YAW-MODELING USING A SKEWED VORTEX CYLINDER MODEL

(b)

x

y

z
eζγt

γl
Γr

γb

(a) (c) (d)
Figure 4.1: Vortex wake model used in this study. The influence of the tangential vorticity (a), the
longitudinal tip-vorticity (b), the root-vortex (c) and the bound vorticity (d) is studied independently. The
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Figure 4.2: Coordinate system used for the study of the skewed cylindrical system

longitudinal vorticity are respectively:

Γr = −Γtot ez, γb(r) = Γtot

2πr er, γt = − Γtot

h/ cosχ eψ, γl = Γtot

2πR ez, (4.1)

Velocities induced by the tangential vorticity Coleman et al. derived in 1945 [46] an analyt-
ical expression for the axial velocity induced by the tangential vorticity along the fore-aft diameter:
uz,t(r, ψ = 0, z = 0). In 1956, Castles and Durham [38] obtained the axial component of velocity
at any point using an analytical integration over z and a numerical integration over the azimuthal
variable. This approach is extended in the current study to derive all components of the induced
velocity as:

u•,t(r, ψ, z) = γt
4π

ˆ 2π

0

2 (a′•
√
c+ b′•

√
a)√

a (2
√
ac+ b)

dθ′, {a′z, b′z} = R {R− r cos(θ′ − ψ), m cos θ′} (4.2)

{a′r, b′r} = R {z cos(θ′ − ψ), − cos(θ′ − ψ)} , {a′ψ, b′ψ} = R {z sin(θ′ − ψ), − sin(θ′ − ψ)} ,
(4.3)

{a, b, c} =
{
R2 + r2 + z2 − 2rR cos(θ′ − ψ), 2mR cos θ′ − 2mr cosψ − 2z, 1 +m2} (4.4)

where the symbol • stands indifferently for r, ψ, z and where m = tanχ. Properties in the far-
wake and in the rotor disk are further shown in [24]. The velocity field in the rotor plane was
approximated with:
uz,t ≈

γt
2

[
1 + 2Ft tan χ2 cosψ

]
, ur,t ≈ uz,t tan χ2 cosψ − γt

2 Ft sec2 χ

2 , uψ,t ≈ −uz,t tan χ2 sinψ
(4.5)

where Ft(r, χ) = Kz,t(r,χ)
2 tan χ

2
≈ r/2R. Coleman et al. derived a closed form solution for Kz,t and

provided a linear approximation. The axial and tangential functions take exact values on the
vertical and horizontal diameters while the radial component takes exact value only on the horizontal
diameter.
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Velocities induced by the root-vortex The velocity is directly obtained from the Biot-Savart
formula of a semi-infinite vortex filament (see e.g. [23]), as:

uz,r = Γr
4πr(1− cosψ sinχ) sinψ sinχ, uψ,r = Γr

4πr(1− cosψ sinχ) cosχ. (4.6)

Velocities induced by longitudinal part of the tip-vortices The velocity is also obtained
from the induction of a semi-infinite vortex filament as:

u•,l = γl
4π

ˆ 2π

0

N•

D1
(
D2 +

√
1 +m2D1

) dθ′, Nz = m (− sin θ′ + r̃ sinψ) , Nψ = −mz̃ cosψ − cos(θ′ − ψ) + r̃

Nr = −mz̃ sinψ + sin(θ′ − ψ), D1 =
√

1 + r̃2 + z̃2 − 2r̃ cos(θ′ − ψ), D2 = m cos θ′ −mr̃ cosψ − z̃
(4.7)

with r̃ = r/R, z̃ = z/R. Properties in the far-wake and the rotor plane are derived in the article.
In particular it is shown that the velocity is zero within the vortex cylinder of longitudinal vorticity
in the far-wake and that the streamlines outside of the elliptical cross-section are confocal ellipses
in a plane perpendicular to the wake direction. The following engineering model is suggested for
the velocity field in the rotor plane:
uz,l ≈ −γlFl(r) tan2

(χ
2

)
sin(2ψ), uψ,l ≈

γl
2 tan

(χ
2

) [
1 +Gl(r)− Fl(r) sec2

(χ
2

)]
cosψ (4.8)

where Gl ≈ 0.1(r̃ + 7r̃5) and Fl ≈ 0.1(r̃ − 2r̃3 + 6r̃5).

Velocities induced by the bound-vortex disk Due to the assumption of constant rotor cir-
culation, the induced velocity from the bound-vortex disk is identical to the one obtained in the
right-cylinder case from chapter 1.

Contribution of each component to the whole system From the derivations above it is
possible to compute the velocity field induced by the entire system in the whole domain using
numerical integration, and in the rotor plane using the approximate formulae. A study of the
contribution of each component to the whole system for different pitch values is illustrated in
figure 4.3. The pitch and tip-speed ratio are assumed for simplicity to be related by1 h ∝ πR

λ [1 +√
1− CT ] ≈ 4πR/(3λ), using CT = 8/9. The induced velocities of each vortex component are linear

with respect to their corresponding vorticity intensity. As seen in equation (4.1), only γt varies with
h and χ. In the figure, uz is scaled with uz,0 = γt/2 which is therefore a function of h. It is observed
that uz,l is negligible and uψ,l modest for the range of pitch displayed. Yet, for higher pitch, i.e.
lower a tip-speed ratio the influence becomes non-negligible. If the tip-speed ratio approaches
infinity, uz,t clearly predominates the other vortex components. This justifies the work of Coleman
et al. who considered only this component. For finite tip-speed ratios though, the influence of
the root-vortex in both the axial and tangential direction is significant. The root-vortex has a
greater influence closer to the root while the tangential and longitudinal vorticity have a greater
influence towards the rim of the disk. For large radii, the influence of the tangential vorticity and
longitudinal vorticity have a comparable magnitude which is not a negligible proportion of the root
vortex influence. These components should be taken into account in BEM computations of yawed
rotors.

1The relation h− λ presented here is a simplified measure for qualitative assessment. It uses the axial induction
at the rotor and a′ = 0 to assess the pitch, instead of a more correct formulation that would consider the far-wake
induction.
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Figure 4.3: Comparison of the maximum azimuthal influence of each vortex components for a skew angle
of χ = 30◦, different helix pitches and two radial positions: r/R = 0.3 (in black) and r/R = 0.7 (in grey).
Left: Axial induction scaled with the axial induction at the middle of the rotor uz,0. Right: Tangential
induction scaled by uψ,0 = Γtot/2πr.

4.3 Conclusions
The vortex model of Coleman et al. was extended for cases of finite tip-speed ratio by including the
influence of the longitudinal tip-vorticity and the root-vortex. The analysis was not restricted to
the axial component but included all the Cartesian and/or polar components. The influence of the
bound vorticity was also mentioned so that the total velocity field induced by this vortex system
can be determined in the entire domain. Results for an infinite elliptical cylinder (appendix A.5.4)
were derived as part of this study.
The contribution of the longitudinal vorticity as a second harmonic term is consistent with obser-
vations and empirical formulae derived in the literature. On the one hand, the influence of the
longitudinal tip vorticity appears to be of second order as long as the tip-speed ratio is large com-
pared to unity. On the other hand, the influence of the root-vortex and the tangential vorticity
on both the axial and tangential velocities should be included in BEM code yaw- or tilt-models.
The inclusion of the tangential velocity component induced by the longitudinal vorticity is rec-
ommended. Simple engineering models were provided for each of the velocity components. The
application of the model and its implementation into a BEM code for comparison with experiments
and/or CFD calculations will be the topic of chapter 5.
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Chapter5
Simple implementation of a new yaw
model
This chapter is based on the following publication: ‘Investigation of a new model accounting for
rotors of finite tip-speed ratio in yaw or tilt’ [29].

Prologue The skewed vortex cylinder system studied in chapter 4 is used to derive a new BEM
yaw model consistent with existing models. Results from BEM, CFD and vortex methods simula-
tions are compared with measurements. The limitations of the new yaw model are studied.

5.1 Context
The analytical studies from Glauert in 1926 [70] and Coleman et al. in 1945 [46] form the basis of
most yaw-models implemented in BEM codes. Yet, these models strictly apply to rotors of infinite
tip-speed ratios. Coleman et al. used a skewed vortex cylinder to represent the wake behind a
rotor. The ratio between the right cylinder induction and the skewed cylinder induction provides
a correction factor that is applied in BEM codes.
Coleman’s vortex system was extended to assess the effect of finite tip-speed ratio in chapter 4 [24].
Semi-analytical formulae and corresponding engineering models were provided for each velocity and
vorticity components. The model can be applied both to yaw and tilt configurations of a rotor.
The MEXICO rotor [181] with data from the test case 2.1 of the IEA Task 29, first post-processed
by Pascal [156] and finalized by Schepers et al. [179], will be used in the current study. Re-
sults from the in-house flow solver EllipSys3D [138, 197] were presented in a previous study by
Sørensen [198] using geometry-resolving CFD, and in a study by Shen [187] using Actuator Line
(AL) simulations [196]. Offsets between these high fidelity tools and the measurements were ob-
served in previous studies [182, 198, 186]. Priority will be therefore given to the azimuthal trends
when comparing with the measurement data.

5.2 Contribution and key results
Contributions The implementation of a new yaw model based on the skewed vortex cylinder
results is established. Measurements from the MEXICO experiments [181] are compared to BEM,
CFD and vortex methods simulations. The limitations of the model are studied.

Yaw model implementation It is assumed that the differences in induced velocities between
the right and skewed vortex systems reflect the change of induced velocities that should be applied
to correct momentum theory results in yawed configuration. It is chosen to use one single vortex
cylinder representative of the rotor. This is the option chosen when using Coleman or Glauert
yaw-models. The notations and engineering models from chapter 4 are adopted. The values of uz,t
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and uψ,r for χ = 0 are assimilated to AD momentum theory inductions. Using equation (4.5) and
equation (4.6), the ratios between these induced velocities for a given χ and for χ = 0 provides the
following factors:

Rz,t = 1 + 2Ft(r, χ) tan χ2 cos (ψ − ψ0) , Rψ,r = 1
1− cos (ψ − ψ0) sinχ cosχ (5.1)

The above factors are applied to the momentum theory induced velocities aU0 and a′Ωr. They
imply a redistribution of the inductions over the AD without changing their azimuthal averages.
The former factor corresponds to the classical BEM yaw model. The total induced velocities to
be used in the velocity triangle are uz = aU0Rz,t + uz,r and uψ = a′ΩrRψ,r + uψ,t + uψ,l. The
added components are absent in the non-yawed case. To further close the system, the vorticity
distributions γl, γt and Γr need to be computed, which in turn require the knowledge of Γtot, h
and χ. The skew angle can be determined using different methods (see e.g. [79, p. 99]), it is here
assumed given. The value Γtot is taken as the average integrated value of circulation on the rotor
blades. For simplicity, the helical wake pitch is assessed using the distance run by the tip-vortex in
one rotor rotation: h = 2πR

λ cosχ.

Preliminary results - comparison with measurements The conditions of the experiments
are: U0 = 15 m/s, Ω = 424.5 RPM, ρ = 1.237 kg/m3, λ = 6.67, CT = 0.75. The yaw angle is
θyaw = −30◦ using the sign convention of figure 5.1 and the blade pitch is −2.3◦. Results from the

Wake axis

High ui
Low ui

θyaw

χ

Envelope

“upwind” “downwind”

(Moment)

ψ − ψ0 = 0◦ ψ − ψ0 = 180◦

tan χ
2 slope

(low Fn)
(high Fn)

Figure 5.1: Top-view of the wake cross-section laying
in the plane y = 0, data for χ = −30◦. The velocities
induced by the tangential vorticity along the fore-aft
diameter of the rotor (z = 0) are shown. Their rela-
tive fluctuations around the mean induction, or enve-
lope, has a slope of tan χ

2 . The distribution of velocity
produces normal forces that can possibly (e.g. below
stall) generate a restoring moment.

BEM yaw-model are compared with numerical simulations from geometry-resolving CFD, AL-CFD
and a free-wake vortex-code. The new BEM model and the free-wake vortex-code were included in
the aerodynamic module of HAWC2 [110]. An AL simulation of the rotor using EllipSys3D was
performed for the current study. The vortex code (VC) simulations are performed using the lifting-
line formulation of the OmniVor library (Configuration 2-1, see section 9.3). The BEM-, AL- and
VC implementations use the same airfoil data. The angle χ is determined from the free-wake code
as χ = −36◦, a value consistent with the model χ = 1.2 θyaw [189]. The following observations were
made: the mid-part of the blade (shown in figure 5.2) is well described by all codes; the vortex and
AL code, which both use the same airfoil coefficient data, are in reasonable agreement at the blade
root and in excellent agreement elsewhere.

Investigations on the implementation The VC is used as a reference to evaluate the perfor-
mance of the new yaw-model since the latter is also vortex-based. Results are shown in figure 5.3.
The new model performs best when the corrections to the inductions are applied outside of the
BEM convergence loop (“BEM new(out.)” as opposed to “BEM new(in.)”). The concentrated
root vortex, uz,r have a strong influence on the axial velocity. It is expected that an implementa-
tion using a superposition of vortex cylinders will moderate the influence of the root vortex (see
chapter 6). The terms acting in the tangential direction were all observed to give a significant
contribution to uψ. They can be listed from the most influential to the least as: uψ,t, Rψ,r and
uψl . The amplitude of uψ with the new model is in good agreement with the one obtained from
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Figure 5.2: Tangential (left) and normal (right) loads (w.r.t. chord line) over the azimuth at r = 0.6R

the VC due to the contribution of uψ,t. The induced velocity in the tangential direction is never-
theless small compared to the wind contribution U0 sin θyaw cosψ. The overall performance of the
new yaw-model and Coleman/Glauert model compared to VC results is assessed using correlations
and mean-square differences. The mean correlation coefficient of the tangential and normal loads
compared to VC results is about 0.94 for both yaw-models. Yet, the relative squared distance to
the VC loads is divided by two using the new yaw-model. The average correlation coefficient of
the induced velocities increases from 0.36 to 0.90 using the new model. This gain is mainly due
to the improved modelling of the tangential induction. The maximum squared distance to the VC
inductions is divided by 1.2 by using the new yaw-model. Overall, the loads and induced velocities
are closer to the vortex code results with the new model than with the Coleman/Glauert model.
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Figure 5.3: Induced velocities (left) and loads (right) over the azimuth ψm = ψ + π/2, for two radial
positions. No dynamic stall model is used. Results at the inner part of the blade can be further improved
using a superposition of cylinders.

The conclusions that follow were obtained using the results given in the article [29]. The effect of
dynamic stall and stall delay are not included for the results of figure 5.3. BEM simulations with a
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dynamic-stall model [114] and VC simulations without shed vorticity1 were performed with focus
on the inboard section. In [179], an increase of loading occurring at ψ = 270◦ for r = 0.25R was
observed in the measurements. In [29], it was seen that this could not be explained by the influence
of the root vortex but is partly due to the effect of shed vorticity. Also, the analysis revealed that
the shift of loading towards lower azimuth at the inboard part of the blade cannot be due to the
influence of a single root vortex. This shift is yet captured using a superposition of cylinders (see
chapter 6).

Relaxation of assumptions and extension of the model The model presents four main
assumptions which are: an infinite number of blades, a rigid wake, a constant circulation over
the radius, and a constant circulation over the azimuth. Figure 5.4 illustrates the effect of wake
distortion (left) and finite number of blades (right) for uz (similar conclusions are drawn for uψ).
The vortex code OmniVor with its prescribed-circulation formulation was used (Configuration 1,
see section 9.3).
The wake distortion introduces phase and amplitude shifts along the blade which could potentially
be modelled in a BEM extension. The rigid-wake assumption appears justified to a first order
approximation since the main azimuthal and radial trends are captured.
Figure 5.4(right) shows the induction that is obtained for a number of blade of 1 and 3 when the
tip-loss factors from Prandtl (Pr.) or Glauert (Gl.) [28] is used together with the new yaw-model
(derived for an infinite number of blades). Glauert’s formula appears satisfactory to model the
effect of finite number of blades on the axial induction but over-predicts the changes in tangential
induction [29]. The yaw-model derived for an infinite number of blades can be applied with sufficient
accuracy together with Glauert’s tip-loss factor for three-bladed rotors.
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Figure 5.4: Numerical investigation of the model limitations. Left: Effect of wake distortion on the vortex
model for a number of blades of 10 representing an infinite number of blades (99% accuracy). The inset
figure shows the outline of the wake with and without distortion. Right: Azimuthal variation of the axial
induced velocities with the number of blades for two radial positions.

5.3 Conclusions
The implementation of a new yaw-model based on recently developed vortex-theory results was
presented. The model relaxes the assumption of infinite tip-speed ratios used in current BEM
yaw-models. Three tools using the same 2D airfoil coefficient data were used in this study. Good
agreement was found between the actuator-line and the vortex code simulations. The latter was

1In these simulations, the shed vorticity is fully removed: It doesn’t contribute to the wake rollup and to the
rotor inductions. Ideally only the latter contribution should be removed.
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used as a reference to validate the new vortex-based yaw-model. The induced velocities and loads
obtained with the new BEM yaw-model showed better agreement with the vortex code than the
standard yaw-model implementation. The influence of a single root vortex was not seen to be the
source of the shift of loading towards lower azimuth at the inboard part of the blade. The new
yaw-model combined with the effect of dynamic stall showed reasonable agreement for the inner
part of the blade which is usually difficult to model. The limitations due to the assumptions of
infinite number of blades and rigid-wake were briefly discussed. These effects could be accounted
for using engineering models. The assumption of rigid wake was seen to be justified to a first order
approximation while the effect of finite number of blades can be consistently modelled using Glauert
tip-loss factor. Future work will address the relaxation of the assumption of constant circulation
along the blade azimuth2. The next chapter addresses the relaxation of the constant circulation
along the blade radius.

2Chapter 7 relaxes this assumption for the case of infinite tip-speed ratio.
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Chapter6
Advanced implementation of the yaw
model - Pre-study

This chapter is partially based on results given in the following publication: ‘Investigation of a new
model accounting for rotors of finite tip-speed ratio in yaw or tilt’ [29].

Prologue The BEM yaw model presented in Chapter 5 can be improved by using a superposition
of skewed vortex cylinders. The pitches of the different cylinders can be determined using the results
from the superposition of right cylinders shown in Chapter 2. Engineering formulae for the velocity
field outside of the skewed cylinder are required for fast numerical evaluation.

Contributions The velocity field on the fore-aft diameter for r > R is given analytically. The
elements necessary to implement a more advanced yaw models are given. A preliminary application
is shown.

6.1 Introduction

In a combined publication by Heyson and Katsoff [86], Heyson used a superposition of cylinders
to study yawed rotors with radially-varying but azimuthally-constant circulation. Heyson later
compared his results with experiments [87] finding good agreement in the near-wake, but decreasing
accuracy in the far-wake due to wake distortion. Heyson used numerical integration to compute
the axial induction from the tangential vorticity of the different cylinders. The study consisted in
a pure vortex model and was not linked to a BEM code. Chaney et al. [41] used a superposition
of two skewed cylinders to model the stalled inner-part of the rotor. Despite its simplicity the
cylindrical vortex model with a step circulation was shown to reveal important features that other
models would not capture.
The current study will present the elements needed to determine the velocity field from a super-
position of skewed cylinders in view of implementing a BEM yaw model. Preliminary elements are
given in this chapter but further work is required to complete the study. The current chapter will be
structured as follows. First, engineering formulae for the velocity field outside of the skewed vortex
cylinder will be presented. Second, the determination of the helical pitch of the vortex cylinder is
discussed. Third, the implementation of the yaw model using a superposition of cylinders is given.
Third, results from the partial implementation done in [29] will be discussed.
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6.2 Models for the velocity field outside of the skewed cylin-
der

Unlike the right vortex cylinder, the induced velocities are not zero outside of the skewed vortex
cylinder. Care should then be taken when using a superposition of skewed cylinders to include the
influence of the cylinders outside of their radii. Despite the fact that the full velocity field can be
obtained from the results of Chapter 4 using numerical integration, closed form engineering models
are preferred for their lighter computational cost. The models derived at the time of writing are
presented in this section.

Velocity induced by the root vortex The closed-form analytical formulae from equation (4.6)
can directly be used. In practice though, the influence of the root vortex can be neglected since
the circulation usually drops to zero towards the root of the rotor. The “root-vortex-circulation”
is then carried by and distributed amongst the first inner cylinders.

Velocity induced by the tangential vorticity Following the approach of Coleman et al. [46]
the velocity on the fore-aft diameter is sought. The three integrals Coleman et al. introduced are
here evaluated for r > R,
uz,t(r > R,ψ = 0) = γt

2 (1 +K2 +K3) (6.1)

K3(r, χ) = 2Ft(r, χ) tan χ2 (6.2)

K2(r, χ) = − r
√

1 +m2

2m2 (r2 −R2)

(
r
(√
C −B +

√
B + C

)
√
r2 +m2R2

+
√
C −B −

√
B + C√

1 +m2

)
(6.3)

with
B = 2r

√
(1 +m2)(r2 +m2R2), C = (2 +m2)r2 +m2R2 (6.4)

The azimuthal variation of the axial velocity is modelled based on the value at the fore-aft diameter
as:

uz,t(r < R,ψ) ≈ γt
2 (1 +K3(r)) cos(ψ) (6.5)

uz,t(r > R,ψ) ≈ γt
2 (1 +K2(r)) cos(2ψ) +K3(r) cosψ (6.6)

The model values are exact for ψ = 90◦. The comparison between the model and the numerical
integration on the rotor plane is shown in figure 6.1.
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Figure 6.1: Comparison between engineering model and numerical integration on the rotor plane. The
engineering model values are represented by circles.
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Velocity induced by the longitudinal vorticity No models were derived so far.

6.3 Helical pitch for the superposition of skewed cylinders
Performing the system closure in the case of the skewed cylinder is more complexed than in the
right cylinder case. A proper account of the convection velocities in the far wake is required. To
a first approximation, it is thus suggested to determine the intensities of each vortex systems as if
the cylinders were not skewed. The results from Chapter 2 could then be applied to determine the
helical pitches. More details for the discrete implementation of the system closure can be found in
section E.5. The steps required for the calculation of the helical pitches are given in section E.7.

6.4 Yaw model implementation using a superposition of skewed
cylinders

The notations of Chapter 2 are adopted and partially reproduced in figure E.1. The intensity of
each vortex system are determined according to equation (1.1),

Γr = −
∑
i

Γ̃iez = −Γ1 ez, γt,i = − Γ̃i
hi
eψ, γl,i = Γ̃i

2πRi
ez, (6.7)

and the system closure discussed in section 6.3 is used to fully determined γt,i. A single root vortex
represents the superposition of all the other root vortices. The total induction from all the vortex

Γ̃i = Γi − Γi+1

Γi

Γn

Γ2

Γ1

(a)
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(c)

Γ(r)

r

Γi
Γi

Γi
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n∑
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ri Γ̃n = Γn

Figure 6.2: Principle of superposition for a radially varying bound circulation (a): decomposition using two
cylinders (b) or using one cylinder and a root vortex (c). The latter allows a convenient application of the
constant circulation model.

systems for the �-component at a control point j is:
u�(rj , χ, ψ) = u�,r(rj , χ, ψ) +

∑
i

[u�,t,i(rj , χ, ψ) + u�,l,i(rj , χ, ψ)] (6.8)

Similar to the implementation presented in section 5.2, the momentum theory inductions are cor-
rected by comparing the inductions from the right and the skewed cylinder models. The velocities
induced by a superposition of right cylinders is given by equation (2.3):

uz(rj , χ = 0) = −
n∑
j=i

γj
2 , uψ(rj , χ = 0) = −

n∑
j=1

Γ̃j
4πr = − Γi

4πr (6.9)

The difference between the superposition of right cylinder and the single right cylinder case is that
both the longitudinal tip-vorticity and the root vortex contribute to the tangential induction in the
former case whereas the longitudinal tip-vorticity does not contribute in the latter. On the other
hand, the tangential vorticity is the only one to contribute to the axial induction in both cases.
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The correction factors applied to the momentum theory inductions are:

Rz(rj , χ, ψ) =
∑
i u

i
z,t(rj , χ, ψ)

uz,t(rj , χ = 0) , Rψ(rj , χ, ψ) =
uψ,r(rj , χ, ψ) +

∑
i uψ,l,i(rj , χ, ψ)

uψ(rj , χ = 0) . (6.10)

The remaining induced velocities present in the skewed cylinder case that are absent in the right
cylinder case are: uz,r, uz,l and uψ,t. The influence of the other axial components are added to
the total induction in a way similar to the single cylinder case (see section 5.2). For simplicity
the influence of the root vortex may be omitted at once since the circulation usually drops to zero
towards the root of the rotor. The “root-vortex-circulation” is then carried by and distributed
amongst the first inner cylinders. The component uz,l can also be neglected for simplicity since its
influence is negligible compared to the other components (see Chapter 4).

6.5 Partial approach - focus on the inboard part of the blade
A superposition of skewed cylinder was used in [29] to investigate the possible improvement on yaw
modelling compared to the case with a single cylinder. The study presented two limitations: the
velocity field outside of the vortex cylinders were not modelled and the different cylinders had the
same helical pitch for simplicity. A constant pitch value simplifies the derivations but violates the
kinematic condition across the vortex cylinders (see section 6.3). Preliminary results using only the
inner induced velocities are shown in figure 6.3 to illustrate the applicability of the method. The
operating conditions correspond to the test case used in Chapter 5 for the MEXICO experiment.
The error introduced by using only the inner velocities is expected to be small closer to the root
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Figure 6.3: Normal and tangential loads with respect to the chord line for r/R = 0.25. The yaw-model
using a superposition of vortex cylinders shows improved agreement with the vortex code.

since few cylinders have a radius lower than the control point at this location. The comparison of the
constant-circulation yaw-model and the varying-circulation yaw-model reveals a clear improvement
when using the second model since this model shows closer agreement with the vortex code results.
The increased normal loading around the 90◦-azimuth is well captured by the model. Yet, further
investigation using both inner and outer velocities are required to fully assess the performance of
the model.

6.6 Conclusions
The possibility of using a superposition of skewed cylinders to improve yaw-modelling was consid-
ered. The assumption of constant circulation can be relaxed at a relatively low cost. To achieve
this, engineering models were provided for the velocity field outside of the skewed cylinder. The use
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of the helical pitches from the superposition of right cylinders is suggested as a first approximation.
The implementation of the yaw-model was discussed. Preliminary results showed that improved
accuracy can be obtained. The shift of loading towards lower azimuth at the inboard part of the
blade was captured using a superposition of cylinders and can thus not be attributed to the influ-
ence of the root vortex. Further work is required to fully model the velocity field outside of the
skewed cylinder and fully implement this more advanced yaw model.
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Chapter7
Shear-model of Gaunaa et al.
This chapter is entirely based on results given in the following publication: ‘Modelling the influence
of wind shear using a simple vortex rotor model’ - [67]. The author had only a modest contribution
to the article. The content will hence only be briefly presented without proof.

Prologue Due to the friction of the atmosphere with the earth surface, the wind profile is not
uniform. The fact that the velocity increases with height induces shear stresses in the fluid and
vorticity is present in the transverse direction. By extension, one will refer to wind shear or sheared
inflow to describe such velocity profile. The simplest model of a shear profile consists in a step of
wind speed, which in turn can be modelled by a vortex sheet. The current chapter will add the
effect of this vortex sheet to the vortex cylinder model from Chapter 1.

7.1 Context
Wind shear plays a significant role on the loads and power production of a wind turbine. However,
previous studies have shown significant deficiencies in state-of-the-art models attempting to include
the effect of wind shear on wind turbine performance [127]. Madsen et al. [127] used different BEM
models to simulate a wind turbine operating in a strongly sheared inflow and compared the results
to the ones of more advanced codes. Shen et al. [188], Sezer-Uzol and Uzol [183] used free-wake
vortex simulation to investigate the aerodynamic loads and performance of a horizontal axis wind
turbine in non-uniform inflow. These three studies found that the power output in a sheared inflow
is lower than in uniform inflow. However, the full Navier-Stokes computations conducted by Zahle
and Sørensen [226] showed an increase in power production when operating in shear, which was
largely proportional to the increase in the available power in the incoming flow. An analysis of
the local power coefficient (based on local far upstream velocities) showed that the efficiency was
highest on the lower half of the rotor and it was explained to be due to the differences in local
angle of attack and tip speed ratio. Micallef et al. [137] used oblique ring elements to model the
wake of a turbine in shear flow and to obtain an analytical solution of the deflection of the wake.
Due to the inclination of the vortex rings, a vertical velocity component is induced from the low
velocity side to the high velocity side. Thus, the model predicted an upward movement of the wake
in agreement with predictions by various free-wake vortex simulations [183, 73].
The current study employ a simple analytical rotor model based on vortex theory to investigate
and explain some of the main mechanisms at play for an idealized wind turbine rotor operating in
a sheared inflow.

7.2 Key-results and contributions
Contribution from the author The author only contributed to the result concerning the in-
duction of an infinite vortex cylinder of tangential vorticity of arbitrary cross section. The result is
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usually found in the literature using solid angle arguments (see e.g.[200, p. 155], [93, p 76], [212]).
Different arguments are used in this article.

Models studied Gaunaa et al. considered three different models: rotor in uniform flow with
uniform loading; rotor in uniform flow with a step in loads; rotor in step-shear with a step in
loads. Only the results from the last model will be presented here and the reader is referred to the
reference for more details.

Cylindrical vortex model of a rotor in shear with large tip-speed ratio The velocity
profile upstream is assumed to be equal to U0 − γs,0/2 for y < 0 and U0 + γs,0/2 for y > 0. This
step of velocity is induced by an infinite vortex sheet at y = 0 of intensity γs,0. Due to the step
in velocity the rotor loading is different in both regions1. The label 1 is attributed to the “lower”
domain and 2 to the “upper” domain. The thrust coefficient, the circulation and far-wake velocity
in the region i = 1..2 are noted Cti , Γi and Uwi (see figure 7.1) with Cti = ΓiΩ

πU0i
. The wind tur-

bine wake is represented using a vortex cylinder with different tangential intensities in the upper
and lower parts. The shear vorticity and the change of wake vorticity between the two regions is
represented with an infinite vortex sheet of varying intensity. The system is analysed using values
at infinity upstream and downstream. The continuous variation of vorticity is not accounted for.
Further, the possible vertical displacement of the shear vortex sheet upstream and downstream of
the rotor is disregarded. The system may be viewed as consisting of the following vortex sheets:
• an infinite vortex sheet of intensity γs,0ex at y = 0 inducing the “backbone” step of wind speed
• two semi-infinite “open-half-pipes” of tangential vorticity γ0−1 and γ0−2 respectively
• a rectangular vortex sheet within the cylinder of intensity γ1−2ex, located at y = 0 and extending
from x = [−R;R] and z = [0; +∞[, resulting from the change of loading and vorticity between the
two semi-infinite half-pipes
• a rectangular vortex sheet within the cylinder of intensity ∆γsex, located at y = 0 and extending
from x = [−R;R] and z = [0; +∞[, which corresponds to the variation in shear intensity due to the
lower convection velocity within the cylinder

U02 = U0 + γs,0
2

Ct2

Ct1

Uw2

Uw1

U02

U01

γs,0 ∆γs + γ2−1

γ0−2

γ0−1

y

z

U01 = U0 − γs,0
2

Figure 7.1: Side view of the vortex model and coordinate system. A consistent system is obtained when
the velocities in the far wake are as represented in this figure (see Gaunaa et al. [67]).

The presence of the vortex cylinder slows down the shear vorticity which is then assumed to evolve
from γs,0 upstream to γs,w = γs,0 + ∆γs downstream (see figure 7.2). By conservation of vorticity
the shear vorticity strength upstream and downstream verifies γs,0Vc,0 = γs,wVc,w, where Vc is the
convection velocity of the vortex sheet.

Vorticity strengths - Results only By consideration of the convection velocity of the vortex
cylinder sheet far downstream the vortex strengths are (a positive convention is adopted as opposed

1In the paper, the case of different loadings without a step of velocity is also considered.
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γs,0 γs,w

x

z

γs,0

γs,0

U01+U02
2 =

Vc,0

Vc,w =
Uw1+Uw2

2

Figure 7.2: Top view of the model of the shear vortex sheet intensity as it passes through the vortex cylinder

to the other chapters):

γ0−1 = Ω
2π

Γ1

Vc,0−1
, γ0−2 = Ω

2π
Γ2

Vc,0−2
, γ2−1 = Ω

2π
(Γ1 − Γ2)
Vc,w

(7.1)

It can be shown [67] that a consistent vortex system is obtained when the far wake velocities within
the half cylinders are constant and equal to

Uwi = U0i − γ0−i (7.2)
and with the following vorticity strength:

γ0−i = U0i

(
1−

√
1− Cti

)
⇒ Uwi = U0i

√
1− Ct,i (7.3)

γ2−1 =
Ct1U

2
01
− Ct2U2

02

Uw1 + Uw2

(7.4)

Since the velocities in the far wake are constant, the condensation of the shear vorticity is:

∆γs = γs,0

(
U0

Vc,w
− 1
)

= γs,0

(
2U0

Uw2 + Uw1

− 1
)

(7.5)

Rotor variables The axial induction is defined in each region with respect to the “local” free-
stream U0i as:

ai ≡
U0i − Uwi

2U0i
(7.6)

Using for each region of the rotor the “local” free-stream velocity, a KJ analysis leads to:
Cti = 4 ai (1− ai) , Cpi = 4 ai (1− ai)2 (7.7)

The results have the same form as 1D momentum theory results indicating the independence of the
two rotor regions.

Balance of longitudinal vorticity - Result only Both the wake vorticity and the shear vor-
ticity are stretched in the axial direction. The wake vorticity in regions 1 and 2 are stretched due
the difference of wind speeds in each regions. The shear vorticity is stretched due to the wind-speed
reduction within the wake. This axial stretching results in the formation of axial vorticity. It is
shown in [67] that the two effects are of opposite sign and equal strength and they thus cancel out.

7.3 Conclusions from the article
Application of the model to a non-uniformly loaded rotor in non-uniform inflow showed that 1D
momentum theory is valid in a local sense. Thus, when defined according to the local free-stream
velocity, the power coefficient of an ideal rotor was found to be unaltered by the presence of shear.
Finally, a study of the influence of the inherent deformation of the vorticity sheets generated by
the rotor and the wind shear revealed that there is no generation of axial vorticity and hence no
cross-shear induced velocities. Thus, the model, unlike most free-wake vortex models, does not
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predict any cross-shear deflection of the wake. All free-wake analyses in shear known to the authors
have not taken into account the deformation of the shear vorticity. Such account is considered in
the current vortex code implementation as discussed in Chapter 14.
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Chapter8
Model for unsteady circulation and inflow
This chapter is based on results given in the following publication: ‘Superposition of vortex cylinders
for steady and unsteady simulation of rotors of finite tip-speed ratio’ [26]. At the time of writing
the article is under review.

Prologue The superposition of cylindrical vortex wake models for finite tip-speed ratios presented
in Chapter 2 is extended for unsteady simulations. The term unsteady is here understood as a
change in time of the rotor circulation between two azimuthally constant circulation distributions.
This case can correspond to a uniform change of wind speed on the rotor area, or a synchronous
pitching of the blades. Results from Chapter 2 [26] (with details provided in Appendix E) will be
used. Similar to the approach chosen in Chapter 2, an elementary system is introduced first before
using a superposition of elementary systems.

8.1 Context
An equilibrium between loads and velocity inductions is not reached instantaneously if a change
occurs in the rotor conditions. Changes at the rotor propagates downstream and it takes time for the
wake to adapt to the new conditions. This can be understood in terms of the vorticity which is shed
by the rotor in response to time changes of bound circulation. BEM codes implement these effects
using dynamic inflow models. Øye [79, p. 94] and Pitt and Peters [159] are examples of contributors
to the development of dynamic inflow models currently in use. Despite their theoretical grounds,
the models require a certain level of empiricism. The model by Øye uses first order systems which
time constants need tuning. The time constants were determined using an unsteady vortex ring
model of a given wind turbine [79, p. 94]. Similar implementation of the model [128, 112] rely on
tuning based on actuator disk simulations.
The current study will investigate the possibility to use the vortex cylinder model to study uniform
unsteady changes in the rotor conditions. The model was partially inspired by the electromagnetic
study of Protheroe regarding the transient field outside a solenoid [163].

8.2 Contributions and key results
Contributions The key elements required to implement an unsteady cylindrical model were
introduced. A proof of concept of the model was presented. The crude assumptions applied
appeared satisfactory. The model can e.g. be applied to tune dynamic inflow models.

Elementary unsteady model The elementary unsteady vortex model for a step change of
circulation is illustrated in figure 8.1. A steady state solution of the rotor is assumed at t = 0,
where the total rotor circulation is Γ0 and the free-stream is U0. The wake hence consists of a
semi-infinite cylinder and a root vortex with intensities determined by equation (1.1). At t = t1,

47



CHAPTER 8. MODEL FOR UNSTEADY CIRCULATION AND INFLOW

the rotor circulation is assumed to jump to the value Γ1. The wind speed may also change to the
value U1. The change of circulation will then be assumed to be convected at the velocity that the
far-wake cylindrical sheet would have for a steady state condition of intensity Γ1 and under the
free-stream wind condition U1. At a given instant t > t1, the wake consists in two vortex cylinders,
two root vortices, and one wake vortex disks. The convection velocities of the two systems, labelled
0 and 1, are different. In this study, it will be assumed that the two systems remain adjoin. More
advanced implementations and choices of advection velocities could be done, but simplicity is here
preferred. The location z1 where the change of circulation is present in the wake is thus modelled

x

y

z

z1 = Vz,1t

γb,1

Γr,1 Γr,0

γb,0 − γb,1

γt,1
γl,1

γt,0

γl,0

Figure 8.1: Illustration of the unsteady vortex cylinder model. The wake consists of several finite cylinders
along z (two represented here), and a superposition of cylinders radially (one represented here). Each
cylinder in the wake has a different circulation intensity. A vortex disk is present in between each cylinder.
It is here assumed that the systems do not overlap even if their convection velocity is different.

using the convection velocity of the system 1, as given in Chapter 2

z1(t) = Vz,1 t = U1

2

(
1 +

√
1− C1

)
t (8.1)

where C1 ≡ ΩΓ1
πU2

1
(1 + a′c,1). It is noted that the index refers to the vortex system 1 and is not a

radial index (handled in the next paragraph). The tangential velocity will be assumed to reach the
steady state value instantaneously but the axial velocity is assumed to be influenced by both the
finite and infinite vortex systems. The induced velocity from a finite cylinder of tangential vorticity
γt,1, extending between z0 and z1 can be found in [23]:

ur(r, z, z0, z1) = γt,1
√
R

2π
√
r

[
2− k2(r, z)
k(r, z) K

(
k2(r, z)

)
− 2
k
E
(
k2(r, z)

)]ζ1
ζ0

, (8.2)

uz(r, z, z0, z1) = −γt,1
4π
√
rR

[
ζk(r, z)

(
K
(
k2(r, z)

)
+ R− r
R+ r

Π
(
k2(r, 0), k2(r, z)

))]ζ1
ζ0

(8.3)

where k(r, z) is defined in equation (1.2) and where the brackets stand for the primitive integral,
function of ζ, to be evaluated between ζ1 = z − z1 and ζ0 = z − z0. The tangential vorticity γt,0
and γt,1 of the two systems are determined from the results of Chapter 2 (see also equation (E.5)).
The total axial velocity is obtained by summation of the two systems

uz(r, z, t) = uz(r, z, z0, z1(t)) + uz(r, z, z1,+∞) (8.4)
and the loads can directly be obtained from the Kutta-Joukowski relation.

Model for a step change between two circulation distributions A step change of circu-
lation distribution is modelled using a superposition of elementary models presented above. The
circulations Γ0(r) and Γ1(r) are discretized into the values Γi,0 and Γi,1. The free-stream velocity
is assumed to be uniform and is respectively noted U0 and U1 before and after t1. The two values
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may be different. Using equation (E.30), the convection velocity of the cylinder i is

zi,1(t) = Vz,i,1 t =

U1 +
n∑

j=i+1
γt,j,1 + γt,i,1

2

 t (8.5)

where the values of γt,i,1 have to be determined according to the procedure of Chapter 2 (detailed
in section E.5 and section E.7).

Unsteady simulation To assess the performance of the unsteady vortex cylinder model, the
experimental test case of the pitch change of the Tjæreborg wind turbine is used. This case is
described in details in the book of Hansen [79, p. 94-95]. The blades of the turbines undergo two
pitch steps at t = 2s and t = 32s between the angles 0◦ and 3.7◦ for a wind speed of 8.7m/s. In the
mentioned reference, the experimental results are compared with BEM code results. An identical
BEM implementation to the one presented by Hansen was used for the current study. Based on this
implementation a vortex cylinder (VC) code was developed. Tip-losses were included in the BEM
results. On the other hand the vortex cylinder model does not include tip-losses. Consequently,
the pitch values used for the vortex cylinder model were slightly adjusted to match the steady state
values of the torque obtained with the BEM code. It was observed that the steady vortex cylinder
model reproduced well the steady state values of the torque if pitch angles of 1◦ and 4.7◦ were used
instead of 0◦ and 3.7◦. Since the change of pitch values is moderate, it can be assumed that the
inflow behavior obtained with the vortex cylinder model with infinite number of blades will still be
similar to the one measured. The steady state values of the circulation and convection velocities
obtained by the steady vortex cylinder model for these two pitch angles are shown in figure 8.2(left).
In both the BEM and VC models the pitch is assumed to change instantaneously, but the induced
velocities adapt progressively. In the VC model, the tangential induction adapts instantenously1.
The BEM code implementation use Øye dynamic inflow model [79, p. 94]. The model is based on
two first order filters that govern the time behavior of the induced velocities. For the unsteady
vortex cylinder model, it is assumed that the circulation instantaneously takes the steady state
value. Yet, this change of circulation is progressively propagated downstream.
Results from the two codes are displayed with the measured values in figure 8.2(right). Since the
simulations were not aero-elastic simulations, the oscillations observed in the measurements cannot
be captured by either of the codes. Comparing the BEM code results with the ones from the BEM
code used in figure 9.8 of [79], it is seen that the two implementations are indeed returning identical
values, hence validating the current BEM implementation. From figure 8.2(right) it is seen that
both the vortex cylinder (VC) and the BEM results agree to a high degree with the measurements.
The vortex cylinder model posses three main advantages. First, the VC model does not rely on
empirical constants as opposed to the BEM dynamic inflow model. In fact, as mentioned in the
book of Hansen [79], the BEM dynamic inflow time-constants were tuned using a simple vortex
model based on vortex rings. Second, unlike the BEM model, the results from the VC model are
independent of the value of the time-step. Third, the VC model provide the unsteady velocity field
in the entire domain. From the agreement of the VC model with the measurements, it appears
that the different assumptions in the unsteady model are fair. The model can thus be used to tune
dynamic inflow models in BEM codes

1The tangential induction within a finite cylinder of longitudinal vorticity bounded by two vorticity disks and
with a root vortex is constant (using the axisymmetry and Ampere’s theorem).
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Figure 8.2: Simulation of the Tjæreborg turbine. Left: Steady values of the circulation and convection
velocity for two values of the pitch angle obtained with a superposition of 60 cylinders. Right: Unsteady
simulation showing the aerodynamic torque while the turbine undergoes a pitch step at t = 2s and t = 32s.
Both the BEM and Vortex cylinder (VC) codes agree to a high degree with the measurements. The VC
cylinder does not use a dynamic inflow model and do not rely on empirical constants as opposed to the
BEM code.

8.3 Conclusions
A vortex cylinder model was described to model a rotor of infinite number of blades and finite tip-
speed ratio under uniform unsteady conditions. For simplicity only uniform step changes in time of
the rotor circulation were considered. The circulation on the rotor was allowed to change radially
using a superposition of cylinders. Analytical formulae for the finite length cylinder were used.
Simulations showed good agreement with both measurements and unsteady BEM simulations. The
unsteady vortex cylinder model has the advantage of not requiring an empirical dynamic inflow
model, unlike its BEM counter part. Also, the unsteady velocity field is available in the entire
domain thanks to closed form formulae. The model can be used to tune or develop new dynamic
inflow models.

Epilogue The model can be extended such that an elementary vortex cylinder is emitted at each
time step. In such case, the use of vortex cylinders may be replaced by vortex rings carrying the
same vorticity (see e.g.de Vaal et al. [57]).
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Chapter9
Description of the implemented vortex
code
This chapter presents contents given in the following article: ‘Validation of vortex code viscous
models using lidar wake measurements and CFD’ [30]. Additional features were implemented since
this article was written. Theses changes were directly incorporated in the current chapter.

Prologue The term vortex-based method is understood as both vortex models and vortex meth-
ods. The previous chapters of this thesis (in Part I to Part III) focused on simple vortex models
developed during this work. The remaining chapters of this thesis will focus on the application of
vortex methods to the topic. The current chapter presents the vortex code implemented during the
PhD. More details about vortex methods are found in the book of Cottet and Koumoustakos [52].

9.1 Introduction
The purpose of the implemented vortex code is twofold. First, it is implemented in view of its
application to aeroelastic simulation of wind turbines in complex inflows (see Part V). Second, the
vortex code is intended to be used as a research tool to study various vortex configurations and
study the contributions of different vortex components separately. The first condition requires the
code to support long time-series simulation for standard load cases applications while remaining
as computationally inexpensive as possible. Indeed, aero-elastic simulations require time-series of
length varying from 10 min to 1 hour. Small time steps are also required to capture the structural
frequencies and a reasonable range of the turbulence spectrum. The second condition requires the
code to stay as general as possible so that it could be used to improve BEM models or investigate
concepts such as kites, tip-rotors, tip-vanes, shrouded rotors, or vertical axis wind-turbines.
The first part of this chapter will describe the individual features of the code. The second part will
highlight the different configurations (combination of features) that were used within this thesis.

9.2 Implementation and features
Presentation of the code The implemented library, named OmniVor1, is a vortex code for
computation of 2D and 3D incompressible fluid dynamics. Vortex methods are a particular set
of Lagrangian methods that use the vorticity ω as a primary variable. Traditional CFD uses
velocity-pressure variables in an Eulerian formulation. The vorticity (transport) equation, for an
incompressible homogeneous Newtonian fluid under conservative forces is

∂ω

∂t
+ (u · ∇)︸ ︷︷ ︸

convection

ω
∧= dω

dt
= (ω · ∇)u︸ ︷︷ ︸

strain

+ ν∆ω︸ ︷︷ ︸
diffusion

= div(u⊗ ω) + ν∆ω (9.1)

1OMNIVOR Means Numerics Involving VORticity
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where u is the velocity field and ν the kinematic viscosity. The second form uses a conservative
formulation implying the identity divω ≡ 0. The term div(u ⊗ ω) = (ω · ∇)u + udivω is the
divergence of a tensorial product2. Vortex methods use Lagrangian markers as quadrature points to
integrate the vorticity field. The method focuses on the resolution of equation (9.1) together with its
boundary conditions and the convection equation of each marker: dx/dt = u where x is the position
of such marker. OmniVor achieves this using an extended vorticity field formulation discretized
into a superposition of elementary solutions, further referred to as “elements”. The positions and
intensities of the vortex elements approximate the continuous vorticity field. The velocity field is
obtained by inversion of the vorticity definition ω = curlu either using the Biot-Savart law or using
a Poisson solver. Inviscid boundary conditions on solid walls are solved as a Neumann problem.
Vorticity is shed from lifting bodies based on the satisfaction of the Kutta-condition. The code
includes features from grid-free and grid-based vortex methods. The book of Katz and Plotkin [96]
describes the theory and implementation of panel methods with vortex-segment-based wake. The
book of Cottet and Koumoutsakos [52] provides more details on particle-based vortex methods and
grid-based formulations. The current vortex code combines aspects from these different vortex-
methods. Implementation details follow.

Elements (Elementary solutions) The vortex code mainly uses the following low-order ele-
ments with low order geometrical representation: straight constant-strength vortex segments, vortex
particles (blobs), flat constant-strength source panels, and constant-strength doublet panels. The
two first elements are used for instance to represent wakes, while the two last are used for thick
bodies. In the 2D formulation, these elements are mapped to their 2D projections.
Low-order elements usually have lower computational requirements than high-order elements [96].
Yet, higher spatial resolution is required to reach the same level of accuracy. Since high temporal
and spatial resolution is required by the aero-elastic simulation, the choice of low-order element
appeared appropriate.
Fixing the choice of elements allows for the code to be optimized and thus tackles the computational
time challenge. Yet, this does not allow enough flexibility for using it as a research tool. As a result
of this, elements are gathered into four categories: particles, segments, panels and miscellaneous
elements. The last category adds flexibility to the code at the price of less optimization. The
miscellaneous elements currently implemented are: vortex rings, vortex cylinders, helical vortex
segments, point sources, 2D periodic vortex points, Lagrangian Markers, and Eulerian markers3.
The list may be extended without altering the core of the code.
No specific topology of the vorticity is assumed in the implementation. Vortex elements are not
stored as grid or lattice in the memory but instead connectivity tables are used. This allows for
the panelling of bodies of arbitrary shapes and arbitrary segment arrangements.

Smooth/regularization models The simplification of the vorticity field into sheets, lines and
points introduces singularities. For validation against theoretical results, it is often necessary to
maintain this singular behavior. For arbitrary flows, numerical implementation will tend to chaotic
behavior [17]. To circumvent this problem, the singularity is either removed directly in the expres-
sion ([43], [211]), or removed by convolution with a regularization/cut-off function ζ, sometimes
chosen as a mollifier [52, p. 20]. Both approaches are implemented in OmniVor. The purpose of
ζ is on one hand to regularize the velocity field that is numerically produced and on the other to
improve the convergence of the method [221]. Regularization is essential for vortex methods that
relies on the Biot-Savart law. Methods that use a Poisson solver do not require regularization since

2The convention div2(ω ⊗ u) = (ω · ∇)u+ udivω is found e.g. in the book of Cottet and Koumoutsakos [52]).
3Markers are not elementary solutions and they do not induce a velocity. Lagrangian markers are convected like

any other elements.
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the Poisson solver will introduce an inherent regularization (see [45, p. 9093]). The exponential
and compact cut-off functions presented in [217] are implemented for particles, together with the
2D and 3D functions obtained by Beale and Majda [12, 84]. Cut-off functions similar to the ones
described by Leishman [113, p. 592] are used for segments. The segments regularization functions
are named after Rankine, Lamb-Oseen and Vatistas in this reference. The regularization function
are all expressed as function of a smooth parameter ε. This smoothing parameter, or core size,
should be related to the discretization of the continuous vorticity field. If h denotes the typical
distance between particles, or the grid spacing when applicable, the choice ε ≈ 1.5h, is an accepted
rule of thumb. In the context of core-spreading, the core size is related to a viscous representation
of vortices (see the paragraph on viscous models below).

Viscous-splitting Vortex methods rely on the assumption that vortex elements are transported
as material fluid elements. This assumption is only exact under the assumptions of Helmholtz’s
theorem, which comprise the assumption of inviscid fluid. The Lagrangian tracking of vorticity in
viscous methods is justified within the context of viscous-splitting (see e.g. the work of Beale and
Majda [11]). In such context, the convection/deformation step and the diffusion steps are done sep-
arately. Increased accuracy can be obtained by using sub-steps within a time step. This effectively
decouples the hyperbolic part (convection/deformation) and the parabolic part (diffusion) of the
equation.

Convection and numerical schemes A vortex element located at xv is transported according
to the convection equation dxv/dt = u(xv), where u is the fluid velocity consisting of the contribu-
tion from the free-stream, the free-vorticity and the influence of bodies. The determination of the
velocity is detailed in the following paragraphs. The convection equation is integrated numerically
as:

xv(t+ ∆t) = xv(t) + ∆xconvv (t) (9.2)

where ∆xconvv may be determined using different numerical schemes. The following schemes are
implemented in OmniVor : forward first order Euler [63, p. 424], Forward second order Taylor-
Euler [36], second order Adams-Bashforth [8] or fourth order Runge-Kutta [169, 107]. Second
order schemes are given in the work of Cocle, with in particular the use of a Leap-Frog scheme
for convection [45]. Third order Runge-Kutta schemes with adaptive time-step are also popular in
vortex methods (see e.g. Chatelain et al. [42]). In most applications presented in this work the
first-order scheme is used but accuracy can be greatly improved using higher order methods. The
numerical schemes are also used for the resolution of the vorticity equation (stretching, diffusion).
The convection and vorticity transport do not necessary use the same schemes (see e.g. Cocle et
al. [45]).

Grid-free and grid-based methods The way the convection velocities and the RHS of equa-
tion (9.1) are computed leads to two main families of vortex methods: grid-free codes and grid-based
codes. Both versions are available in the current code. General considerations follow and more de-
tails will be given in specific paragraphs below.
• In grid-free methods kinematics are easily handled using the Biot-Savart law: the Poisson equation
is solved using the unbounded Green’s function approach. Scalability of the computational time can
become an issue for large scale problems: The convection ofN elements requiresN2 computations of
induced velocities using a direct interaction algorithm. Tree-based algorithms applied on the vortex
elements can be used to accelerate the computation to O(N logN) and even down to O(N) when a
tree on the control points is also built (fast-multipole methods). Vorticity dynamics are not straight-
forward in 2D and 3D viscous methods since the viscous diffusion requires the computation of the
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Laplacian operator without a grid. Vorticity dynamics in 3D particle methods present the problem
that the vorticity field is not solenoidal [221]. The quality of the simulation deteriorates with
time if no divergence-free correction is applied. Different methods were developed to handle these
difficulties in grid free methods [221]. The convection of vortex segments automatically satisfies
the strain of the vorticity lines. The strain term needs to be computed when vortex particles are
present. LES modelling in a consistent way is not straight-forward and would require “surgical”
techniques such as the Hairpin removal technique [44].
• In grid-based methods, the information is carried by Lagrangian markers but the vorticity equa-
tion is solved on an Eulerian grid. This requires the projection of the vorticity value carried by the
vortex elements onto a grid at each time step. Kinematics are handled on the grid by means of
the resolution of the Poisson equation ∇2ψ = −ω and the subsequent computation of uω = curlψ
using finite differencing. Alternatively, the equation ∇2uω = −∇×ω can be solved for uω directly.
Efficient Poisson solvers with various boundary conditions handling can be used. The values of ω
and u being known on the grid, the RHS of equation (9.1) is easily obtained by means of finite
differencing. It is preferred to use a conservative form of the stretching term in the RHS to reduce
numerical errors [52]. The convection velocity and the evolution of the intensity of each vortex
element are then obtained by projecting the information back from the grid to the elements. The
difficulties found in grid-free methods are easily solved in grid-based methods: Divergence-free cor-
rection, viscous-diffusion, simple LES models are easily implemented. The projection steps from
the grid to the elements and from the elements to the grid are easily implemented using vortex
particles. On the other hand, projecting from the grid value to a vortex segment is not obvious
since it would result in a loss of connectivity. A proper definition of the volume represented by each
element is required to be able to project an intensity value into a vorticity value. Vortex element
shed from the trailing edge of a wing may be attributed a volume representative of the boundary
layer height of the wing section.
Each formulation possess its pros and cons and the choice between one or the other is a matter
of compromises to be chosen or accepted for a given problem. Grid-based particle methods have
clearly been adopted by the community as the method to be chosen for high-order computations.
The second order Poisson solver, Yaps, developed at NTUA by Papadakis is used [155, 154] and
is coupled to the OmniVor library. In order to facilitate performance of the Poisson solver, the
method of local corrections from Anderson et al. is applied [2] together with a domain decomposition
method described by Balls et al. [6].

Lifting and non-lifting bodies Lifting and non-lifting bodies can be present in the flow. Bodies
are allowed to move and deform and their structural deformation may be determined by an elastic
code such as HAWC2 [110]. OmniVor may also prescribe rigid body motions to the various bodies
and allow body coordinates systems to be linked to each other. Lifting bodies are divided into
lifting patches. Three different representations of a lifting patch are available: a thick representation
using doublet panels or a combination of source and doublet panels, a surface representation using
doublet panels forming a vortex-lattice, and a lifting line representation. Different solving methods
are applied for each representation. For the thick and surface representation, the inviscid non-flow
through condition is used to determine the intensity of the vortex elements modelling the body (see
e.g. Katz and Plotkin [96]). Viscous effects on solid boundaries can be included using a method
similar to the one of Chorin [43]. For the lifting line representation, 2D or 3D-corrected (see
e.g. Bak [5]) tabulated airfoil coefficient data are used to determine the aerodynamic loads within
an iteration procedure. Bound, shed and trailed vorticity are approximated as vortex segments.
At every time step a local angle of attack is determined and tabulated airfoil data are used in
combination with a form of the Beddoes-Leishman dynamic inflow model [114]. The implementation
of the lifting line code is similar to the one in AWSM [211]. The main parameters for the lifting
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line algorithm are the relaxation factor, the maximum number of iterations and the criteria for
convergence. The lifting-line technique is the only one compatible with the current grid-based
implementation: lifting, shed and trailed segments are all converted to particles before projection
on the grid. Non-lifting bodies follow the Hess-Smith [85] implementation method using flat source
panels. A final method available which applies to all body representations consists in prescribing
the intensity of the panels. This option allows a focus on specific aspect of the flow while also
reducing the computational time since no solving step is required.

Wake and free-vorticity Free-vorticity is released from lifting bodies upon satisfaction of the
Kutta-condition. The process of emitting free-vorticity from thick and thin lifting bodies is identical
to the one used in the lifting-line formulation of AWSM [211]. “Near-wake” panels of unknown
intensity are attached to the bodies at their trailing-edges. The unknown intensity of each panel
is determined at each time step depending on the solving method of the “patch” to which the
near-wake panel is attached. A panel is converted to vortex segments such that sides shared with
other panels are merged into one segment and such that Kelvin’s theorem is satisfied for the shed
vorticity. The vorticity from this near-wake panel is then convected as free-vorticity. The size of the
near-wake panel is kept as a parameter usually chosen according to be a proportion of the distance
covered by the trailing edge between two time steps.
At any time, a collection of vortex segments or horse-shoes of three vortex segments may be con-
verted to one or several vortex particles. It may be chosen for instance to convert the near-wake
panels directly to particles as described by Voutsinas [217]. A mixed formulation of segments and
particles is possible for the free vorticity in OmniVor. The original connectivity of the segments
forming the near-wake panels is stored if later required. In general though, segments are considered
to be independent. The independence of elements allows for “segments-surgery” or vortex-splitting
algorithms (see e.g. Spalart [199, p. 47] and Winckelmans and Leonard[221]) where vortex elements
that are too strained are divided into several elements or where segments are converted to particles.
Due to Lagrangian distortion, the vortex elements should be periodically redistributed in order
to maintain accuracy [52, p. 235]. This option is only available for particles. Better performance
is obtained when the particles are placed at regular positions (see Beale and Majda [13]). The
information can be projected on a grid at regular time interval in order to redistribute the vortex
particles. Different interpolation kernels can be used for this projection step (see e.g. the book of
Cottet and Koumoutsakos [52, p. 226]).

Wake growth handling The vortex shedding occurring in problems with lifting bodies implies
that the vorticity domain extends with time, which result in a increase of the computational time
per time step. Several options are available in OmniVor to moderate this.
• The wake may be cut all together. This can be achieved based on the wake age or based on the
wake position (a domain is defined and elements outside of this domain are deleted).
• A convection domain can be defined outside of which elements are assumed to convect with the
free-stream velocity. If N is the total number of elements and M is the number of elements within
the convection domain (M ≤ N), then a direct computation would require NM calculations instead
of N2.
• Remeshing on a non-uniform grid can also be used to reduce the resolution and the number
of computational elements in the far wake. Changes in grid size should be progressive for the
projection schemes to be applied. For now, only rectilinear and regular grids are supported but
more complex geometries can be envisaged (like the trumpet mapping of Daeninck [55, p. 259]).
• A hybrid-wake concept similar to the one described by Voutsinas [217] is implemented to achieve
constant computational time per time-step when active. The hybrid-wake concept consists in
recording the induced velocity from the far-wake on a Cartesian grid. Once the recording is done,
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the far-wake is removed and the vortex elements going outside of the grid at each time step are
simply deleted. The parameters of this algorithm are the distance chosen to define the far-wake,
the resolution of the grid, and the recording period used. The recording period may be chosen
to correspond to one rotor rotation, so that once the recording is done, the recorded far-wake
influence is chosen at each time-step depending on the azimuthal position of a reference blade.
Similar implementations store the main Fourier components associated with the rotational period
in order to avoid storing the entire recorded velocity and focus on the “steady” wake effects [217].
Such approach is only possible for problems with a given periodicity (e.g. constant rotational speed
of a turbine).

Vortex splitting and merging Different schemes were implemented to split and merge vortex
elements.
• Segment merging: For simulations with really small time steps, a high resolution of vortex seg-
ments is kept near the blade but these segments are merged and averaged together after a given
time and for each n time steps.
• Segment splitting: When a segment has extended more than a given proportion it is split into n
sub-segments.
• Particle splitting: When a particle strength has extended more than a given proportion it is split
into n sub-particles.

Strain in grid-free particle methods The convection of the vortex segment points extremity
satisfies the strain equation to first order approximation (e.g. Cottet and Koumoutsakos [52, p. 69]).
This is nevertheless not the case for the vortex particles. The vortex particles strengths αp have to
be updated according to the strain equation (see e.g. Voutsinas [217] and equation (9.1)):

dαp

dt
= (αp · ∇)u (9.3)

In the absence of viscosity or higher order terms such as hyper-viscosity, the stretching term will
tend to make the simulation “blow-up”, independently of the solenoidal quality of the particle
vorticity field (see e.g. Winckelmans and Leonard or Chorin [221, 44]). Different schemes exist to
compute the stretching term: direct, transposed and mixed (see [220]). The problems that might
result from the stretching term are rarely discussed in the literature. A starting vortex behind a
wing can be challenging due to its strong intensity. Remeshing, vortex splitting, adaptive time-
stepping or specific stretching implementation4 may be required. The following option is available
in OmniVor ’s implementation: the magnitude of the stretching of a vortex particle can be limited to
a given percentage between two time-steps while preserving the change of direction. This approach
is used in Chapter 13 and Chapter 14 to avoid the simulation blow-up but also provide an artificial
account of the unresolved scales of turbulence.
As the particles evolve the flow field will loose its divergence-free nature (see Cottet and Koumout-
sakos [52, p. 60 and p. 84]). Corrections are not used for the results presented in the current thesis
but will be considered in the future.

Diffusion - Viscous models The models for the account of diffusion related to the free-vorticity
are discussed here. Vorticity generation and modelling of viscous effects arising at solid bound-
aries [175] will not be discussed. Under the assumption of viscous-splitting the convection step and
diffusion step are treated separately [11]. Four models for the resolution of the diffusion equation
∂ω
∂t = ν∆ω were implemented.

4Winckelmans, Chatelain, Voutsinas, private communications.

58



CHAPTER 9. DESCRIPTION OF THE IMPLEMENTED VORTEX CODE

• Grid-based method: the diffusion equation is solved using a finite difference scheme on a struc-
tured grid after projection of the vorticity onto the grid.
• Random-walk method: the diffusion step is applied by introducing a random displacement of
standard deviation proportional to the viscosity to the vortex element.
• Core-spreading method: the method intends to solve the diffusion equation by changing the core
size of the regularization function with time. This method comes from the analogy between the
Gaussian regularization function and Lamb’s [108] Gaussian vorticity distribution which is an exact
solution of the 2D-Navier-Stokes equation for a single viscous vortex.
• Particle-strength exchange: the Laplacian operator is replaced by an integral operator for which
the particle approximation can be applied (see [220]).
References to more methods are found in the review presented in the PhD thesis of Barba [7].

Coupling with aero-servo-elastic code Three different coupling methods are available: strong,
soft, or loose coupling. The strong coupling solves the flow for each sub-iteration of the structural
code. The soft coupling only solves the flow once at each time-step and the loose coupling does
so only after a given number of structural time steps. Obviously the strong coupling is preferred
for an accurate aero-elastic simulation, and this was used in all studies. Coordinates, orientation
and velocities of each of the bodies cross-sections are provided by the structural code at each sub-
iteration. The OmniVor library solves the flow for this new configuration and returns the lift,
drag and moment at each cross-section. When the sub-iteration process of the structural code has
converged, the aerodynamic convection and diffusion step is performed. The OmniVor library has
been coupled to DTU’s aero-servo-elastic code HAWC2 [111].

Free-stream and external inflow The library may use its own wind module or the wind module
present in the aero-elastic tool to determine the free stream velocity at a given point in time and
space. Such module contains for instance shear, turbulence inflow and standard gust inflow. On
one hand, non-uniform and non-constant inflow do not fall into the potential flow theory and such
application should be taken with care. On the other hand, the same holds for the momentum theory
on which BEM codes are based. The investigation of these complex inflows within the context of
vortex methods will be the topic of Part V.

Matrix solver Boundary elements methods (panel methods) requires the inversion of a matrix,.
This step can be performed using a library implemented by the author, or using the following
LAPACK implementations: standard library, MKL sequential or MKL threaded.

Acceleration techniques Three directions were successively chosen to reduce the computational
time of the computationally expensive part of the code, i.e. the wake-relaxation step.
• Direct method (N2): The induced velocity functions were parallelized using OpenMP and MPI.
Further improvements were obtained by in-lining and porting this part to C, obtaining an average
speed-up of 1.5 between the Fortran and the in-lined C implementation. Finally, the C-code was
parallelized on Graphical Processing Units (GPU) using the CUDA framework. An average speed-
up of 3.5 was obtained between the OpenMP C-version run on 64 threads and the GPU version
run on a Tesla K20c device with double precision. This led to a speed-up factor of 200 between
the sequential Fortran code and the CUDA implementation. It should nevertheless be noted that
the full vectorization potential of the CPU-version was not exploited. Further improvement may
be obtained by using AVX intrinsics for vectorization or multi-GPUs setups. This implementation
was done in collaboration with H.H. Brandenborg Sørensen from DTU Compute. Results from the
scaling of a computational step with the number of cores is shown in figure 9.1 for a problem of
0.6M particles.
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Figure 9.1: Scaling of the parallelization of the wake-relaxation step. Results obtained for 0.6M particles.
(a) Speed up for the N2 step. (b) Comparison of computational times between the parallel N2 and parallel
tree implementations. Transfer times corresponds to communications between the different CPUs. The
problem is here too small for the tree code and the transfer times soon becomes as important as the
computational time.

• Tree-based method (N logN): A tree-based multipole method [74, 172] was implemented to
reduce the algorithm complexity to O(N logN). Second order multipole expansions were used for
both the velocity and the velocity gradient computations (see e.g. Salmon et al.[172]). Using 0.6M
particles, a speed-up of about 50 was obtained compared to the direct method (see figure 9.1b) for
an average relative error estimated at about 0.02% for the velocity and 0.04% for the gradient. This
implementation was done in collaboration with P. Mercier [136]. Results from the scaling of the
code is shown in figure 9.2. The tree algorithm has been further improved and parallelized since
these results were obtained.
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Figure 9.2: (a) Scaling and (b) computational time related to the multipole-tree implementation obtained
using 1.1M particles and different number of cores. (c) Algorithm scaling for different number of particles
on a single machine.

• Grid-based code: The vortex code includes a grid-based formulation which can make use of Fast
Fourier Poisson solver (see e.g. [176]). Such codes have a computational cost in O(N logN) and
are usually faster than a tree code. At the time of writing the Poisson solver developed by G.
Papadakis at NTUA is used [155]. G. Papadakis greatly eased the coupling with his Poisson solver
and provided post- and pre-processing functions.

Implementation The OmniVor library consists of several library-layers built upon each other.
The library was originally developed in Matlab. Each layer was then progressively ported to Fortran
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with the help of a matlab-to-fortran converter developed by the author. The code was tested
against five different compilers and on multiple platforms to ensure its portability. Each library
layer possess C-binding functions that facilitates its call from other programming languages. A
Python and Matlab class have been implemented to wrap the library such that test scripts from
both languages will have the same syntax. The name and description of the different library layers
of OmniVor are given below.
• Layer 0 (chipmunk): contains induced velocity functions
• Layer 1 (ze mouffette): computes the evolution of a “user model” (set of vortex elements and
wings).
• Layer 2 (raccoon): generates and handles a “user model” based on a set of bodies of given motion
• Layer 3 (coyote): ensures the coupling between the raccoon layer and an elastic code (e.g.
HAWC2 )
• Layer 4 (bear): tools (BEM, vortex code, aero-elastic code) wrapper for wind energy simulations
(parametric study, power curves, optimization). This layer is still under development.
The human is the ultimate known layer of OmniVor, so far.

9.3 Specific configurations used in publications
Configuration 1 (Prescribed lifting-line, segment wake) In this configuration the circula-
tion on the lifting line is prescribed. The circulation may be constant in time or time-varying. In
the first case no shed vorticity is emitted. The wake consists of vortex segments which convect and
roll-up. No viscous diffusion or remeshing is used.

Configuration 2-1 (Lifting-line, segment wake) The circulation is determined at each time
step using an iterative procedure such that the induction at the blades is in equilibrium with the
blade and near wake circulation (see [211]). The circulation at the blade is determined using the
KJ relation and 2D tabulated airfoils data (or analytical expressions such as Cl = 2π sinα). A
dynamic stall model can be applied. The wings emit vortex segments representing the trailed and
shed vorticity. The effect of shed vorticity may be removed if desired. The wake consists exclusively
of these vortex segments. They convect and roll-up. No remeshing is used. Viscous diffusion may
be modelled to some extent using random walks and core-spreading methods. Turbulence and shear
may be included in the “free-stream”, but the vorticity associated to it is not accounted for.

Configuration 2-2 (Lifting-line, segment to particles wake) Same as 2-1 but the wake
vortex segments are converted to particles after a given wake age (assumed non zero, since this is
the case of configuration 3). No remeshing is used. For viscous simulations, the core-spreading and
random-walk models are available for both segments and particles.

Configuration 3 (Lifting-line, pure particle wake) Same as 2-2 but the trailed and shed
vorticity is immediately converted to particles. For viscous simulations, the core-spreading and
random-walk models are still available but more physical models are obtained using the grid-based
method or the PSE method.

Configuration 2-1-turb (2-1 + turbulent vortex particles) Same as 2-1 but turbulence
is modelled using vortex particles. Remeshing can be used (it affects only the turbulence). The
amount of stretching is limited.
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Configuration 3-turb (3 + turbulent vortex particles) Same as 3 but turbulence is mod-
elled using vortex particles. The amount of stretching is limited. The particles are periodically
redistributed. The M’4 kernel interpolation kernel (see [52]) is used for this projection step. The
multipole tree algorithm is used.

Configuration 3-map (3 + external map) Same as 3 with the possibility to add the contri-
bution of an external Neumann-to-Dirichlet map (or generalized Helmholtz decomposition surface
term) which accounts for the vorticity outside of the computational domain (see e.g. the discussion
around equation (12.4) and Chapter 14).

Configuration 2D-0 (2D vortex particles only) The vorticity is projected onto 2D vortex
particles. No bodies are present.
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Chapter10
Vortex code validation and illustration

Prologue Several of the validation cases run for the vortex code described in Chapter 9 will be
presented in this chapter. The current vortex code implementation, OmniVor, originated from the
re-writing, improving and extension of a previous vortex code from the author [20]. It was checked
that both versions give identical results. Most of the test cases that are presented here were studied
in more details for the previous implementation. The main new features that are presented in
this chapter compared to the previous study are: vortex blobs and source panels; gradients of the
velocity fields; thick bodies; square flat-plate results.

10.1 Simple validation of the vortex particle method
The accuracy of vortex particle methods depends to a large extent on the determination of the
velocity uω and deformation [∇u].ω from the distribution of vorticity. The accuracy of both the
grid-free Biot-Savart law and the Poisson solver approaches are studied by comparison with the
analytical formulae of the Hill’s spherical vortex [88, 1]. The particles are initialized using the
analytical vorticity value on a regular grid of spacing h/a where a is the radius of the Hill’s sphere.
The domain extends from −1.2a to 1.2a in all directions. The velocity is then computed by the two
methods on two control volumes: one entirely located inside the sphere and one crossing the sphere
surface. Both volumes are made of 1000 control points that remain unchanged for the different
grid spacings tried. The second control volume is more challenging since the vorticity experiences a
discontinuity at the sphere boundary. The mean relative error between the numerical and analytical
velocity and deformation on the two control volumes are shown in figure 10.1 (from [31]) . The
Poisson solver uses a grid of the same spacing as the particle spacing. Different grid spacing h were
used, the lowest grid resolution corresponding to 2000 particles and the highest to 14M. Resolutions
up to 628M particles were also tried. Both methods are seen to be second order as expected. Better
performance of the Poisson solver was observed in the determination of the velocity. For the grid-
free approach, the accuracy can easily be improved by using higher order 3D regularization kernels
ζ [12, 84] as long as the vorticity distribution has sufficient continuous derivatives [11]. For the
Poisson solver, both the order of the solver and the order of the differentiation scheme are important.

10.2 Lifting Line
Elliptical wing The lifting line implementation and its iterative algorithm is validated using the
exact same test case as the one used by van Garrel [211]. The condition corresponds to an elliptical
wing of span b = 5, and max chord c0 = 1 at α = 5.7106, which profile coefficients are given by
Cl = 2π sinα. This implies the following theoretical values: Cl = 0.4765, Γmax = 0.2395. The
geometry is such that the aspect ratio is AR = 6.3662 and the wing area is 3.9270. The free stream
is set to V0 = [0 0.1 1]. Results for a discretization of 20, 40 and 80 span points distributed using
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Figure 10.1: Accuracy of the current particle method using the Biot-Savart law or the Poisson solver
by comparison with the analytical solution from the Hill’s vortex. Relative error in velocity (left) and
deformation (right). The errors were evaluated in a domain inside the Hill’s vortex (plain lines), and in a
domain surrounding part of the boundary of the vortex (dashed lines). The latter present more challenges
due to the discontinuity of the vorticity across the boundary.

.

an approximate “full-cosine spacing” (see [211]) are shown in in figure 10.2. They are in perfect
agreement with the work from van Garrel.
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Figure 10.2: Validation of the lifting line implementation using an elliptical wing. The Figure to the right
is a zoom of the left one.

10.3 Lifting surface
Flat plate Validation results for a rectangular flat plate of different aspect ratios are shown
in figure 10.3b. Values are compared with experimental data [96] and various theories. More
informations can be found in previous work from the author [20] but also from the analysis of
Tuck [208]. Perfect agreement is found with the semi-analytical result from Tuck at high aspect
ratio, and good agreement is found with the vortex lattice code from Jones 1960 [96]. Differences
between the lifting surface results and the lifting line results from Prandtl are expected due to the
difference in formulation.

Elliptical wing The analytical derivation from Kida [100, 208] provides the exact lift coefficient
Clα of an elliptical wing from the three-dimensional lifting surface theory. Comparison with the
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lifting surface implementation is shown in figure 10.4, where k2 = (a2 − b2)/a2, with a and b the
two semi-axes of the ellipse.
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Figure 10.4: Validation of the lifting surface representation using an elliptical wing. For a same value of k
two aspect ratios are possible (marked with two different colors).

Trapezoidal wing The trapezoidal wing was also used as a validation case and can be found in
previous work of the author [20]. Existing relations used for validation can be found in [15] and [3].

Linearized squared flat plate In [99, p. 124], Kerwin presents results for the lift coefficient of
a flat plate with 7 digits accuracy. The results obtained using the current vortex code are given in
table 10.1 with 8 digits accuracy. The round off at 7 digits matches exactly the results from Kerwin.
The exact configuration presented by Kerwin needs to be applied: M spanwise and N chordwise
panels with an identical panelling configuration as the one used by Kerwin; the last vortex ring
control points needs to be at the trailing edge (TE); the infinite wake needs to be along the flat
plate and not along U0; the KJ force needs to be computed even for the last vortex ring (the one
just before the TE), since the last filament do not have 0 intensity; no core or exit conditions should
be applied in the induced velocity functions.

10.4 Thick bodies
Airfoil - Doublet representation The representation of an airfoil using constant strength
doublet was validated using the van de Vooren and Kármán-Trefftz airfoils [96]. A wing with a
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Table 10.1: Convergence of vortex lattice calculation for a squared foil with aspect ratio 1.0. Tabulated
values of dCl/dα obtained with 8 digits accuracy.

M/N 4 8 16 32 64 128
4 1.4587018 1.4592853 1.4593515 1.4593570 1.4593572 1.4593572
8 1.4592630 1.4600102 1.4600966 1.4601047 1.4601057 1.4601058
16 1.4593061 1.4600848 1.4601958 1.4602086 1.4602098 1.4602099
32 1.4593089 1.4600909 1.4602065 1.4602223 1.4602241 1.4602243
64 1.4593089 1.4600915 1.4602074 1.4602238 1.4602260 1.4602263
128 1.4593089 1.4600915 1.4602075 1.4602239 1.4602262 1.4602265

large aspect ratio is used to validate the 3D version of the code against the 2D version. Results
for the van de Vooren airfoil are shown in figure 10.5. The slight differences observed are of the
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Figure 10.5: Pressure distribution for the the van de Vooren airfoil at (left) 0 and (right) 5 degrees angle
of attack

same order of magnitude as the one shown in the book of Katz and Plotkin. The overshoot at the
trailing edge is found in doublet formulations. Better results are obtained in with a combination of
sources and doublets.

Sphere - Source representation Validation of the quad source panels is done using the inviscid
flow about a sphere. The corresponding theory can be found in [229]. The pressure distribution on
the sphere is illustrated and compared to the theory in figure 10.6.
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10.5 Unit-tests
A number of unit-tests are run regularly to ensure consistency of results between each revision of
the code and test the different library interfaces. At the time of writing about 32 unit-tests are
present. A short description of some of the most important unit-tests is given below. Results from
some of these tests corresponds to the ones shown in the previous sections.
- Elementary flows: Validation of the induced and gradient velocity functions (chipmunk level)
- Parallel/Sequential: Evaluate the relative norm between the velocities and gradients obtained
with the parallel and sequential implementations (ze mouffette and raccoon levels) .
- Flow past a sphere
- Flow around an analytical vortex ring and cylinders (both at ze mouffette and raccoon levels)
- Elliptic wing with lifting-line formulation: both with wake time-stepping or an infinite wake panel
- Geometry interpolation based on thick profile geometries.
- Rectangular plate lift coefficient for different aspect ratios
- Pressure distribution over 6 different airfoils
- Diffusion of a 2D Lamb-Oseen vortex
- Check that the conversion to particle and remeshing do not affect the loads on a wing
- Check that the proper shear profile is retrieved using vortex particles and a surface map (see
Chapter 14)

10.6 Further validation
Furher validation cases are presented in a separate document [21]: Numerical experiments related
to the accuracy of vortex methods were reproduced to validate the vortex code; The implementation
of the current PSE diffusion scheme implementation was done by considering the diffusion of the
Lamb-Oseen vortex.
More validation cases can also be found in a previous work of the author [20], with in particular:
unsteady flat plate simulations, comparisons with other vortex codes and various applications to
wind turbine simulations in uniform and yawed inflow. All these validation cases were not run
again for this new implementation since the results are expected to be identical.
Future work will focus on the grid-based vortex particle formulation, using in particular Hill’s
vortex solution and vortex rings instabilities (see e.g. Cocle et al. [45]) for validation. Comparison
of results from the oscillating wing performed by Conway and Tezok may be considered [50]. The
next chapter will present examples of validation cases applied to wind energy which were run using
the current implementation.
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Chapter11
Examples of wind energy validation cases
This chapter presents contents given in the following articles: ‘Validation of vortex code viscous
models using lidar wake measurements and CFD’ [30] and ‘Aeroelastic large eddy simulations
using vortex methods: un-frozen turbulent and sheared inflow’ [31] . The chapter also consists of
unpublished content.

Prologue The current chapter presents results obtained from the current vortex code compared
to BEM, CFD and measurement results. Vortex segment simulations are performed using Config-
uration 2-1 and particle simulations using Configuration 3 (see section 9.3). The CFD computa-
tions presented were performed using the in-house EllipSys3D flow solver developed by Michelsen
and Sørensen [139, 197]. The Actuator-Disk (AD) version of the code is described in [140]. The
Actuator-Line (AL) version of the code is described in [196].

11.1 Comparison with BEM and Actuator-Line simulations
BEM codes, Actuator-line CFD and lifting-line vortex codes can easily be compared to each other
since they all represent the blade as a line and the same airfoil data can be used.

Uniform inflow Simulations for the Mexico rotor [179] at U0 = 15m/s, Ω = 424.46 RPM, −2.3◦
pitch were performed using all codes. Comparison of the AL code with measurements was done by
Shen et al. [187] and is not done here. Results are shown in figure 11.1. The Mexico rotor is known
to have drastic changes of airfoil characteristics along the span responsible for the trailing of strong
vortices between two family of airfoils. The AL simulations were performed using a resolution of 60
points along the span, whereas the other simulations used 40 points. The method of interpolation
of profiles may be different in the AL-CFD and the two other methods. This could explain why
the vortex code does not reveal a variation of loading as drastic as the CFD. In general, the three
codes are in good agreement.

Yawed inflow AL and vortex code results for yawed conditions are illustrated in figure 5.2 for
the mid-span of the blade. The two codes agree to a high degree in this situation. Closer to the
blade root, the agreement between the AL and the vortex code was reduced [22]. The differences
in the core next to the root may be due to the absence of viscous diffusion of the root vortex in the
vortex code. This remark is only speculative and needs further investigation.

11.2 Wakes and flow field for uniform inflows
A model of the three-bladed stall regulated Nordtank 500kW turbine is used ([78]: D = 2R = 41m,
Ω = 27.1 RPM) with a tilt angle of 0◦ and with U0 = 7.5m/s, CT = 0.75 and λ = 7.7.
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Figure 11.1: Normal (left) and tangential (right) forces for the Mexico rotor in uniform inflow as obtained
with three “lifting-line”-based codes that use the same tabulated airfoil coefficients.

AD simulation and segment wake A qualitative comparison of AD and lifting-line vortex
wake results is presented here [30]. Both codes use the same profile data. A uniform inflow of
7.5m/s without shear and turbulence is used. Details of the simulation setup for both codes are
found in [30]. Mean velocity contours are displayed in figure 11.2 to provide an overview of the flow
as simulated by both tools. The two codes reveal the same flow qualitative features. Differences
are yet expected since the CFD-AD distributes the blades loads on a disk. A high velocity core,
in the inner region of the wake is observed for the vortex code. The deterioration of results of the
vortex code is seen in the far-wake due to Lagrangian distortion and the absence of redistribution.
A more detailed comparison of the wake deficits will follow in the next section.
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Figure 11.2: Mean dimensionless velocity contour simulated by AD-CFD (top) and the vortex code (bot-
tom) [31].

Particle wake simulation The particle wake formulation was validated against the segment
wake formulation in [31]. The circulation along the span of the wind turbine blade for a simulation
with a vortex segment wake and with a particle wake is shown in the right of figure 11.3. The
agreement between the two cases validates the implementation of the particle wake method.

70



CHAPTER 11. EXAMPLES OF WIND ENERGY VALIDATION CASES

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1
Rel. Error: 0.28 %
R2 = 0.9999

r/R [−]

C
ir
c
u

la
ti
o

n
/U

0
 R

 [
−

]

 

 
   

Segment wake

Particle wake

Figure 11.3: Left: Circulation along the blade at the end of the simulation using a vortex segment wake or
a particle wake. Right: vorticity values obtained from the particle simulation for a wake extending from to
0 to 6D [31].

11.3 Effect of Viscosity - Comparison with AD
The Nordtank turbine is used again to assess the effect of wake viscosity. The AD and vortex codes
are run for two values of the kinematic viscosity: the standard air viscosity (ν = 1) and a value 1000
times higher (ν = 1000). The profile data are assumed independent of the Reynolds number for ease
of comparison. The Reynolds number based on the rotor diameter for the normal and high viscosity
are respectively ReD = 19 × 106 and ReD = 19 × 103. Velocity deficits obtained from CFD and
different vortex-code simulations are compared in figure 11.4. A previous study revealed that wake
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Figure 11.4: Wake deficits for AD and vortex codes at two viscosity values. Two different viscous models
are represented for the vortex code: the core spreading model (δ = 1, t0 = 0.1) and the random-walk model
(ε = 0.5h) (see notations in [30]). The core-spreading case with ν = 1000 is not represented since close to
the case ν = 1.

deficits were slightly independent of viscosity for Reynolds number ReD higher than 50× 103 [140].
At the current Reynolds number, ReD = 19× 103, the viscous effects are seen to slightly decrease
the wake deficit. This trend is observed by both codes but in different proportions. The vortex code
and CFD tool correlates to a large degree in the near-wake and up to three diameters downstream
for the low viscosity case. A clear smoothing and reduction of the deficit occurs in the far-wake
of the vortex simulations. These effects can be attributed to the Lagrangian distortion and the
absence of re-sampling in this case. A consistent description of viscosity from near-wake to far-
wake is expected to improve the accuracy of vortex methods. Yet, the effect of the wake viscosity
and the choice of viscous model are not seen to have an influence on the rotor axial induction. This
is of course only true for a proper choice of the viscous models parameters. These were obtained
using a parametric study and by trying to respect the overlap condition of vortex cores necessary
for the satisfaction of the convergence properties of vortex methods (see e.g. Beale and Majda [13]).
The core-spreading method has been widely used for low-order vortex filament simulation and it
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can be seen that it is indeed well tuned. The random-walk method applied to the vortex filaments
appears to overestimate the viscous diffusion. Neither of the methods are expected to be physically
accurate, partly because the viscous reconnection of two segments is not accounted for. Vortex
particle methods offer greater advantages in this prospect.

11.4 Effect of Turbulence - Comparison with Lidar and AD
Lidar measurement data [166, 119, 120] of the wake of the Nordtank turbine are used for comparison
with U0 = 7.5m/s and CT = 0.75. The lidar measurements are averaged over approximately 18
hours of data selected for a bin of wind speeds between 7 and 8 m/s. Comparison with the
measurements are obtained for both AD-CFD and the vortex code by performing an average over 6
simulations, each of length 10 min. The measured mean-shear corresponds to a power-law coefficient
of 0.18 and the measured mean turbulence-intensity is of 0.13. These values are used to model the
inflow for both codes. Each 10-min simulation is using a different turbulent box generated according
to the Mann model [130, 131]. The simulation setup is similar to the one of section 11.2 and is
detailed in [30]. The vorticity associated with the turbulence is not accounted for in the vortex
code simulation: the turbulent velocity field has an influence of the vortex elements but the vortex
elements do not have an influence on the turbulence vorticity. This case is referred to as external
turbulence. The fully-coupled case is the topic of Chapter 13.
A simplistic nacelle model using of ellipsoidal body made of source panels and the generation of
vortex particles corresponding to the vorticity flux necessary to ensure the no-slip condition was
implemented in a fashion similar to that of Ploumhans et al. [160]. Wake deficits from measurements
and simulations are compared in figure 11.5. Both simulation tools are in overall agreement with
the measurements. The asymmetry of the wake due to the presence of shear and tilt is well captured
by the codes. The correlation between the two codes is greatest for the downstream distances 2D
and 3D. The lack of wake expansion from the vortex code at 1D was seen to be reduced by using
more span-wise elements and lower time steps. The differences with the measurements observed
at x = 1D is due to the quality of this specific measurement point. Later campaigns confirmed
the onset of the double hump shape seen in the simulations [121], so such a variation is physically
correct.
The lower wake deficits obtained by the measurements in the far wake is likely to be due to
differences in atmospheric stability between the measurements and the simulations, the former
being more unstable in average. The measurements were averaged over 18h of data under different
atmospheric stability conditions [121]. Deficits are expected to be lower in unstable conditions.

11.5 Conclusions
This chapter presented different applications of the vortex code implementation to specific wind
turbine simulations.
Simple comparisons of loads at the rotor from BEM, AL-CFD and vortex code showed excellent
agreement for the uniform inflow case. AL-CFD and vortex code results agreed to a high degree in
yawed configuration expect near the blade root. Since the AL code has been extensively used and
validated, the agreement between the two codes demonstrates the possibility of the vortex code to
be used as a predictive tool.
The vortex segment wake formulation was mainly used in this chapter. It was shown that the
particle wake simulation is consistent with vortex segment wake results.
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Figure 11.5: Normalized wake deficit for an average wind speed of 7.5 m/s, measured by the nacelle-mounted
Lidar and compared with actuator-disk and vortex code simulations. The absence of double-hump shape
at 1D is a measurement error. The influence of the Nacelle slightly increases the wake deficit.

A part of the results presented came from a study that was motivated by the consideration that a
better modelling of the wake by vortex methods should imply better performance evaluation at the
rotor plane. The improvement considered was the modelling of viscosity in the wake. It appeared
that such viscous effects were not significant for the range of Reynolds numbers used in wind energy.
Validation of the models for other applications will then be considered in the future.
For both turbulent and laminar simulations, the vortex code showed a coherent modelling of the
near-wake up to three diameters downstream. Further downstream, divergence of results between
CFD and the vortex code was observed.
Using external turbulence flow fields and sheared inflow appeared sufficient to obtain results in
agreement with both CFD and lidar measurements. Investigation of turbulence and shear within
vortex methods is the topic of Part V.
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Chapter12
Reconstruction of a velocity field using
vortex particles

This chapter presents contents given in the following articles: ‘Impact of a wind turbine on turbu-
lence: un-freezing the turbulence by means of a simple vortex particle approach’ [25] and ‘Aeroe-
lastic large eddy simulations using vortex methods: un-frozen turbulent and sheared inflow’ [31]

12.1 Introduction
The possibility to reproduce a given input velocity field using vortex particles is investigated. This
operation will be referred to as “velocity reconstruction”. A direct and simple approach is chosen to
perform such operation. The errors inherent to the method, but also linked to these approximations
are discussed. The problem is applied to a turbulent velocity field in an unbounded domain.

12.2 Simple velocity reconstruction using vortex particles
Particle approximation The particle approximation combines a mathematical and a physical
approach. For the mathematical approach, the vorticity field ω(x, t) is projected onto a set of base
functions fp(x) and the component p of this projection is written αp(t), to give:

ω(x, t) ≈
∑
p

fp(x)αp(t) (12.1)

Each base function is further associated with a given point in space xp and a local volume Vp
is attributed around each point such that the sum of all volume forms the total support of ω.
Choosing fp(x) = δ(x− xp) leads to a simple nodal point approximation of the vorticity field and
the components are obtained as αp =

´
Vp
ω dV . The physical approach consists in splitting the

domain into finite material volumes Vp representing a “particle”. The mean position of the material
volume gives the position of the particle xp =

´
Vp x dV . The particles carry an integral value of ω,

noted αp =
´
Vp ω dV which is referred to as the particle strength. The strength and volume being

known, a particle-vorticity value ωp can be defined as ωp
∧= αp/Vp, which is in general different

from ω(xp) . The particle approximation consists in writing the vorticity field as a sum of particle
strengths αp

∧=
´
Vp
ω dV weighted by a local function ζ, usually chosen radially symmetric, as:

ω(x, t) ≈ ωα(x, t) =
∑
p

ζ(|x− xp|)αp(t) (12.2)

Choosing ζ ≡ δ leads to the singular vortex particle method, whereas a proper choice of ζ leads to
a regularization of the method which possess better convergence properties [221]. In the present
study a second order exponential function is used for ζ ([217]).
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Velocity reconstruction approach For most physical applications, a velocity field u can be
written according to the following Helmholtz decomposition: u = u∞ + uω + uφ where curlu∞ =
divu∞ = 0, curluω = 0 and curluφ = 0 (see [167]). For incompressible flows uφ accounts for
boundary conditions. In absence of boundaries and for a flow occupying the entire space uφ = 0.
If the domain is truncated for numerical reasons then uφ 6= 0 and this term represents the effect
of the omitted outer domain. The divergent free component is written uω = rotψ, with the gauge
divψ = 0. In an unbounded space, if the vorticity field is known, the formula ω = curlu leads to
∆ψ = −ω which is partially inverted using the Biot-Savart law:

uω(x) =
ˆ
V

K(x− x′)ω(x′) dV (x′) ≈ uα(x) =
∑
p

Kα(x− xp)αp , K(r) = − [r×]
4π r3 (12.3)

using the notations of [84], and where Kα = K ∗ ζ is the Biot-Savart kernel resulting from the
particle approximation. In the presence of boundaries, surface terms are added to satisfy the
boundary conditions.
In this chapter a Simplistic Velocity Reconstruction Approach (SVRA) for incompressible flow is
chosen. It consists in only using uα to represent u− u∞. For a given velocity field uin the proce-
dure, further called SVRA, is as follows: Compute the rotational of the input field ωin = curl(uin),
perform the particle approximation ωα,in and obtain the velocity field uα,out using equation (12.3).
Obviously, the component uφ and u∞ are not accounted for: By taking the rotational of the velocity
field, the divergent-free part uφ + u∞ is lost since the divergence and the rotational are orthog-
onal operators. Errors are further introduced from the particle approximation and the numerical
implementation of the method, as discussed below.

12.3 Associated errors and discussions
Wrong input - divergence of the velocity field If the input field uin is not divergence
free, then a divergence-free field uout can be obtained as uout = uin − uϕ, where uϕ = −∇ϕ.
Developing the divergence free condition of uout leads to the Poisson equation ∆ϕ = −divuin
which is easily solved using a Poisson solver (with proper boundary conditions). This approach
is used in incompressible CFD solvers inserting synthetic turbulence as body forces [103, 205]. It
was observed by the current author that the divergence-free operation introduced a smoothing of
the velocity field and a cut-off of high frequencies. This step can be skipped here since the SVRA
automatically implies that the output velocity field is divergence-free even if the input field is not.
Indeed uα,out = curlψ and is thus divergence free1.

Model error: No handling of the finite support of vorticity In a numerical implementation,
the support of vorticity has to be restricted to a given domain2. The contribution of the external
domain may be accounted for by means of a Neumann to Dirichlet map which ensures the continuity
of tangential and normal velocity at the interface S. The velocity field inside the computational
domain is u = u∞+uω+uext, where uω is the solution of the homogeneous problem in unbounded

1The particle vorticity field ωα,in generating the divergent free velocity field uα,out may not be divergent free
and thus not the “true” vorticity field corresponding to uα,out. This is a problem inherent to particle methods and
various methods have been implemented to correct the vorticity field every few time-steps to account for it [220].
This justifies the approach of Backaert et al. [4] who input directly the particles obtained from ωin into the domain.
One can also compute the rotational of the solution ωout = curl(uα,out) and perform the particle approximation
again ωα,out.

2In case the input field is periodic, several options are available: 1. Using mirror techniques, a method well
adapted to tree-codes [45, 224] but yet approximate since the number of periodic images is finite; 2. Using a grid-
based Poisson solver and apply periodic boundary conditions 3. Using vortex particles periodic in a half plane based
on Euler-MacLaurin formulae.
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space, i.e. equation (12.3), and where uext is the surface integral solution of ∇2u = curlω that
satisfies the mapping with the external domain [154]:

uext(x) =
ˆ
S

[un(x′)K(x− x′) + ut ×K(x− x′)] dS(x′) , K(r) = r

4π r3 (12.4)

where, un is the component of the input field normal to dS such that un = u · n, with n pointing
towards the interior of the domain, and uτ = −u×n. The omission of uext in the SVRA is a source
of error. Since K ∝ 1

r2 is involved in uext, the error decreases further away from the boundary.
The inclusion of uext in a time-marching simulation is non trivial since the turbulent field evolves
and decays. Furthermore, a dedicated tree-algorithm method would be required for an efficient
estimation of the surface integral from equation (12.4).
The approach chosen in this study consists in using a computational domain large enough. The
input velocity field is further “clipped” so that it continuously reaches zero on the domain boundary.
This implies that the vorticity field also smoothly drops to zero. This is necessary in order to avoid
any “broken” vortex lines on the boundary that would artificially generate strong vortices and
gradually expand to reconnect to the main support [4]. The clipping function is obtained from a
smooth approximation of the Heavyside function as:

c(x) =
[
1 + exp

(
k(1− 2x)
(x(x− 1)

)]−1
x ∈]0, 1[ (12.5)

The value k = 1 was used and the extent was restricted to five grid cells.

Differentiation error The computation ωin = curluin involves a discretization error associated
with the order of the differentiation scheme used and the grid resolution of the input velocity field.
For the results presented in this thesis, fourth order central differences were used to determine the
vorticity with fourth order single-sided stencils on the domain boundaries.

Regularization error The function ζ is in general chosen as a smooth approximation of the
δ-Dirac function and taken as function of a parameter σ [221]. The regularization of the method
improves the convergence property of the method, but it also prevents drastic variations of the
velocity field. Low-order ζ function, or high value of the smooth parameter σ will smoothen the
peaks of the output velocity signals compared to the input. In the current study a second order
smooth function with a smooth parameter satisfying the overlapping condition was used to ensure
the quality of the vortex particle time simulation [12].

Particle distribution and discretization error In the evaluation of equation (12.3), the parti-
cles can be seen as quadrature points and there is thus a quadrature error associated to the integral
evaluation. The discretization error is minimal when the particles are disposed on a regular lat-
tice [13]. The error related to the quadrature in the Biot-Savart evaluation is here quantified using
a 2D sinusoidal input field:

∀ (x, y) ∈ R× [−λ2 ,
λ

2 ], u = sin(ky), v = 0, ωz = −k cos(ky), divu = 0 (12.6)
where λ = 2π/k corresponds to the wave number k. ωz is projected onto periodic point vortices [105]
which x-period is taken as their y-spacing h. A study of the discretization error for different number
of points per period n = λ/h is shown in figure 12.1(left). The analysis reveals that the error is
second order with respect to h, similar to a linear interpolation error. In order to reconstruct a
sinusoid of wave number k with a precision of 2%, around 10 particles per wave length are required.
Said differently, for a given grid spacing h, the method cuts-off wave-lengths smaller than 10h. This
is illustrated in figure 12.1(right) using a superposition of random sinusoids u =

∑
i ai sin(kiy)ex.

This cut-off is relevant for the choice of the minimum scale, or maximum frequency, the method
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Figure 12.1: Reconstruction of sinusoidal signals in 2D using periodic point vortices. Left: Discretization
error in the reconstruction of one sinusoid together with linear interpolation error. Right: Power spectra
for a superposition of sinusoids before and after the reconstruction. The approximate cut-off kcut = 2π/10h
is marked by a vertical line.

can physically represent.
Oversampling of the velocity or the vorticity can be considered to alleviate the cut-off prob-
lem. Oversampling indeed improves the agreement between the input and output field (see fig-
ure 12.2(right)). Nevertheless, matching to a given frequency resolution by oversampling the data
on one hand and accepting that the method cuts-off around a given frequency on the other, are
two different views of the same problem.

12.4 Example of velocity reconstruction for a turbulent field
The SVRA is here applied to the reconstruction of a turbulent velocity field generated using the
Mann model [130]. In figure 12.2 a comparison is carried out in terms of velocity signals and
spectra at the center of the computational domain. The input turbulent field is an isotropic field
of dimensions 10D × 3D × 3D. Three different resolutions were tested. The resolution labeled 1
has dimensions 256× 64× 64 while resolutions 2 and 3 are obtained from resolution 1 by successive
refinements by a factor 2 in each direction. There is good agreement in the low frequency range while
at higher frequencies the velocity spectra obtained with SVRA are seen to loose energy (figure 12.2-
right). This deviation is linked to the spatial resolution of the method. For U0 = 10m/s, D = 41m,
h = 10D/511, the configuration 2 leads to an estimated cut-off frequency of fcut ≈ U0/10h = 1.2Hz.
Increasing the number of particles by a factor of 23 increases the estimated cut-off frequency by a
factor 2. Cut-off values are indicated by vertical lines in the figure. The mean relative error on the
velocity in the plane is 4% for all three velocity components. The error was observed to be larger for
the longitudinal component, the component for which the dimension of the domain is largest. The
effect of oversampling of either the input velocity or the vorticity field is also shown in the figure.
Figure 12.3 shows contours of |u| on a slice of the domain along side with the corresponding relative
error (with respect to the maximum amplitude). The mean relative error over the entire slice is
5% while the maximum error is as high as 25%. By excluding a buffer zone along the boundary,
in the restricted domain defined by the dashed line, the mean and maximum errors drop to 3.5%
and 16% respectively. Consequently, a reconstruction of high quality can be obtained within a
certain domain by sufficiently extending the original turbulence box. Clipping was applied, thus
the contribution from equation (12.4) is zero but the velocity field is altered and is not ensured to
satisfy the continuity equation in this area. If no clipping was applied, the error due to the omission
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Figure 12.2: Comparison of the input velocity field with the one obtained by the SVRA. (right) Velocity
components u, v, w (from bottom to top) for resolution 2, normalized by their maxima. - (left) Spectra of
v obtained for different resolutions and oversampling (ovs) methods . Oversampled spectra are cut at the
maximum physical frequency value. Oversampling the vorticity (ovs. om.) is seen to be less beneficial than
oversampling the input velocity (ovs. vel.).

of uext was observed to be larger. The error within the reduced domain is mainly due to the cut-off
of the method and the order of the regularization kernel. The mean relative error on the turbulence
intensity is 6% in the reduced domain and 3.5% along the centerline of the domain. Lower standard
deviations are obtained with the SVRA due to the cut-off of the method at high-frequencies.
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Figure 12.3: Comparison of input turbulent field with the field obtained using the SVRA: (left) field from
SVRA - (right) Relative error (from 0 to 25%). .

12.5 Conclusions
The reconstruction of a velocity field using a vortex particle representation was investigated. The
main sources of error that were associated with this representation were presented. If a finite
support of vorticity is used to represent an infinite unbounded fluid, a surface term should be
accounted for to supplement this representation. The use of a domain large enough can justify the
omission of this surface term. The cut-off of the frequency content as function of the grid resolution
was highlighted. The possibility to use this simplistic approach to represent a turbulent field using
particles appears satisfactory for an engineering implementation of turbulence. The use of this
representation for time marching turbulent simulations of wind turbines will be the topic of the
next chapter.
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Chapter13
Effect of wind turbines on the turbulent
inflow

This chapter is based on the following publication: ‘Impact of a wind turbine on turbulence: un-
freezing the turbulence using a simple vortex particle approach’ [25].

Prologue The simplified vortex particle representation of a turbulent field presented in Chap-
ter 12 is applied in order to address the following questions: Does a wind turbine affect the statistics
of atmospheric turbulence? Should this imply a change in the way turbulence boxes are used in
wind turbine aero-elastic simulations? Is the error involved in neglecting the influence of the wake
and the wind turbine on inflow turbulence acceptable in an engineering context?

13.1 Introduction
The impact of turbulence on a wind turbine has always been a first priority topic due to its relevance
to safety and design amelioration as indicated by the numerous articles published (e.g. [89, 102]).
The current chapter takes the opposite approach and investigates the impact of a wind turbine on
turbulence, a topic which has recently received interest [190].
Proper reproduction of the atmospheric conditions is crucial to achieve realistic simulations of
wind turbines. The assessment of fatigue and the simulation of extreme events are related to the
turbulent velocity fluctuations contained in the inflow received by the wind turbine. Standard
tools use synthetic turbulence models [101] to generate turbulent fields prior to the simulations.
Examples of models are the ones developed by Kaimal [95], Mann [130, 131] and Veers [215]. In
standard BEM based design tools, the information from the generated turbulent field is contained
in a so called “turbulence box”. The turbulence box is convected with the mean wind speed at
hub height under the assumption of Taylor’s frozen hypothesis [201]. The frozen external field
is fed into the simulation and the turbulent velocity fluctuations are added to the mean wind
flow characteristics [109]. This will be defined as a one-way interaction process: The turbulence
affects the turbine and its wake, but the turbine does not influence the turbulence. Bossanyi [19]
suggested an approach to “un-freeze” inflow turbulence by letting the turbulent field evolve from
one turbulence box to another relying on the model of Kristensen [106]. Yet, this approach does
no address the full interaction.
The generated turbulent fields are also used in higher fidelity CFD tools. The fields are then
included as body forces in a plane upstream of the turbine [103, 205]. The interaction with the
turbine is then a two-ways process: The turbulence affects the turbine and vice-versa. A review
on the simulation of turbulence by means of vortex methods is given by Yokota [224]. On the
application side, Rasmussen et al. [164] inserted vortex particles at the inlet of the computational
domain in order to investigate 2D bridge aerodynamics under turbulent conditions. A similar
approach was used by Chatelain et al. [42], and Backaert et al. [4] who simulated wind turbine
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aerodynamics in 3D, and by Sale et al. who analyzed marine turbines [171]. These works showed
that vortex methods are indeed suitable for analyzing inflow turbulence.

13.2 Contributions and key results
Contributions The current study of the impact of a wind turbine on turbulence is believed to be
the first of its kind. A crude account of the small scales is done by limiting the amount of vorticity
stretching.

Problem definition The two-ways interaction of a wind turbine operating in an unbounded
domain with turbulence generated at a “mask” far upstream is considered. The turbulence is
represented by vortex particles. A sketch of the lay-out is shown in figure 13.1. The problem is
considered in the context of incompressible flows (Ma ≈ 0.2) and the flow equations are given by
equation (9.1). The problem is simplified by neglecting the viscous term (Re ≈ [105 − 107]). Still
the turbulent nature of the underlying flow calls for some account of viscous effects to balance the
production of vorticity from the stretching term (see [201, 10]). A crude way to prevent the blow-up
of the flow in inviscid simulations is suggested by limiting the amount of stretching (a 2% bound
between time-steps is used) and using remeshing to introduce numerical diffusion. The vortex code
formulation used for the handling of the wind turbine and the turbulent particles corresponds to
Configuration 3-turb (section 9.3). A critical discussion on the limitations of the method can be
found in [25].
The SVRA described in Chapter 12 is used to obtain particles based on an input turbulence box
generated using Mann’s model (forced stratified turbulence could also be used [58]). The approach
used by Chatelain et al. [42] is applied to insert turbulent particles at each time-step at the inlet of
the domain. The computational domain used in the present study has dimensions 10D× 5D× 5D
and is shown in figure 13.1. The turbulence box has dimensions 64D × 2.5D × 2.5D, discretized
into 4096 × 64 × 64 cells. The lateral extent is smaller than the computational domain so as to
accommodate any possible growth of the turbulence support. The turbulence was generated as
isotropic, using a length scale L = 30m and a spectral parameter αε2/3 = 1.0 so as to reproduce
conditions observed in the measurement campaign of section 11.4. Around 3 million particles are
present in the computational domain at each time step. Particles exiting the outlet of the domain
are discarded even though other alternatives exist [217, 30]. Simulations of 10min are performed
with a time step of 0.15s. During the simulation, the turbulence box is run around 4 times in the
domain.

5D

10D

5D

2.5D

2.5D
3D

x

z

y

U0

Figure 13.1: Sketch and computational setup. Turbulent vortex particles generated by a “turbulent mask”
(represented by a grid), are inserted at each time step. The turbine is located at x = 0 and the mask at
x = −3D.
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Time evolution of the turbulent flow field in the absence of a wind turbine In the
absence of shear and in the presence of viscous forces the decay of turbulence kinetic energy (TKE,
also noted kt) behind a mask is expected [141, 207]. This is the case in the current study and it
was observed that the TKE was linearly decreasing as the particles evolve away from their insertion
point. This is consistent with isotropic turbulence theory [201, 56, 10]. Energy density spectra (S)
obtained for 10min simulations are shown in figure 13.2. In the “frozen” simulation the particles
convects with the free-stream only, whereas they are convected and stretched by the local flow field
in the “unfrozen” case. As mentioned in section 12.4 a cut-off is expected, here estimated at 0.5Hz.
This explains the differences found in high frequencies between the “Mann” input spectrum and
the reconstructed “frozen” spectrum. The shape of the “frozen” and “unfrozen” spectra shown in
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Figure 13.2: Energy density spectra of u obtained at the center line of the domain. Unfrozen turbulence
is shown after the turbulence has evolved over a distance of 1 and 5 diameters (x = −2D and x = 2D
respectively). The turbulence is decaying in the absence of a driving force such as a shear. Left: spectra
normalized by their integral values. A slight shift towards higher frequencies is observed.

figure 13.2 are in good correlation over the low frequency range. The global loss of kinetic energy
is seen by comparing the unfrozen spectra at two different distances downstream. The relative
comparison of spectra in the right of figure 13.2 shows that the energy distribution tends to shift
towards higher frequencies. This can be interpreted as a positive cascade towards the “Kaimal”
spectrum [95] in a way similar to the observations found in CFD simulations [205]. The apparition
of more energy at high frequencies is likely to be the manifestation of the creation of smaller scales
due to vortex stretching [52] and specific LES-treatment such as the “hairpin” removal technique
should be used to handle these scales [44].
Simulations without the stretching term (in a 2D fashion) were also performed. Significantly less
diffusion was found at lower frequencies whereas at higher frequencies the fluctuations were decaying
further and further away from the mask. A negative cascade is indeed expected to occur in 2D [135].

Influence of the wind turbine on the inflow turbulence The turbine and operating condi-
tions were presented in section 11.4. Simulations were performed in the presence of this turbine and
the two-way interaction was accounted for. The presence of the turbine was not seen to significantly
affect the TKE upstream of the turbine (see [25]). By modeling all flow contributions with vortex
particles, it is possible to split the flow field depending on the origin of the particles: turbulence
vorticity, bound vorticity, and wake vorticity. This decomposition leads to the results of figure 13.3-
left where the influence of the wake and turbulence vorticity at an upstream position x = −0.2R
is considered. The curve labelled “(all)” refers to the complete flow field while that labelled “(tur-
bulence)” only contains the separate contribution of the turbulence vorticity. It is clear that the
peaks at 3p and 6p are due to the presence of the rotor and its wake. Apart from that, their effect
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on other frequencies is insignificant. This result shows that the wind turbine and its wake have
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Figure 13.3: (left:) Two-way interaction of the wind turbine with turbulence. Spectra upstream of the
turbine at x = −0.2R and at the radial position r = 0.7R. The spectrum of the velocity induced by
the turbulent particles is labelled “(turbulence)”. (right:) Statistics of the rotor thrust from wind turbine
simulations using frozen and unfrozen turbulence and for one-way and two-way interactions.

little impact on the turbulence. A careful view reveals that the “Unfrozen+turbine(turbulence)”
result contains more energy at low frequencies and less energy at high ones than in the “Unfrozen”
result.
Three different simulations were run in order to investigate the effect on the integrated rotor loads.
The results are presented in the right of figure 13.3. In all sets the influence of the turbulence vortex
particles on the wake and turbine is accounted for. The converse interaction is only accounted for
in the “Unfrozen-(two-way)” set. In the “(one-way)” sets, the wake and turbine do not influence
the turbulence. By comparing the two unfrozen sets of results it is reconfirmed that the effect of
the wind turbine on turbulence is negligible and that in its turn the effect of turbulence on the
wind turbine loads will not be affected.

Application to wake deficits The above focused on the turbine-turbulence interaction upstream
of the turbine and on the turbine itself. The effect downstream of the turbine is here investigated
in a qualitative way. The simulation and measurements from section 11.4 are used. In figure 13.4
the curves labelled “Frozen and Ext.” refer to results reported in a previous study ([30] and
section 11.4), where velocities from frozen turbulence-boxes were applied as an “external free-
stream” to the vortex code (one-way interaction). Results labeled “Unfrozen” were obtained using
vortex particle turbulence (two-way interaction), where the turbulence intensity was adjusted such
as to obtain the same turbulence intensity as in the frozen turbulence box at the rotor location.
The close agreement between the two vortex code simulations suggests that inclusion of the wake-
turbulence interaction is of second order when studying averaged wake statistics. Furthermore,
Taylor’s frozen hypothesis also appears to be sufficient for such studies. It is indeed expected that
the wake is mainly driven by the large turbulence scales, which were seen to be barely affected by
the turbine. The decay of kinetic energy introduced by the lack of turbulence driving-force does
not seem to affect the wake deficits. The agreement between the CFD-LES and vortex code results
reveals that the absence of proper LES modelling in the vortex code is a fair approximation for such
study. The comparison shows good qualitative agreement with the measurements. The differences
observed were justified in section 11.4.
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Figure 13.4: Normalized wake deficits obtained from (1h) computations and (18h) measurements. Compu-
tations were made using 6× 10min with different turbulent boxes of statistics matching the measurements
conditions.

13.3 Conclusions
With respect to the questions raised in the prologue out of the results presented, the following
conclusions can be drawn:

1. To a first approximation, the presence of the wind turbine does not affect the turbulence
spectrum significantly.

2. A closer look at the results revealed a slight decrease of energy in the lower scales of turbulence
(high frequencies), which in turn implied a slight reduction of the turbine load fluctuations.
Further investigations are nevertheless required to conclude whether this effect is systematic
and if the statistics of turbulence boxes should be altered to account for this effect at the
rotor.

3. The use of Taylor’s frozen hypothesis (one-way interaction) in vortex methods appeared ade-
quate in studying the wake statistics over large time periods. Furthermore, small differences
were found between the one-way and two-way interaction results for the wake analysis per-
formed. The extra cost of using the computationally expensive two-way method does not
appear justifiable for such a study.

Future work should address the physical modelling of the small scales and the interaction between
the turbulence and the turbine linked to the elasticity of the blade. A great challenge also lays in
the possibility to include shear in the method. This is the topic of the next chapter.
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Chapter14
Aeroelastic simulation of a wind turbine
under turbulent and sheared conditions
This chapter is based on the following publication: ‘Aeroelastic large eddy simulations using vortex
methods: un-frozen turbulent and sheared inflow’ [31]

Prologue The simulation of turbulence introduced in Chapter 13 is extended by adding a sheared
inflow modelled using vortex particles. The method is then applied for aeroelastic simulations.

14.1 Introduction
Conventional aeroelastic codes use BEM methods to determine the induced velocities and the
aerodynamic loads at the blade. Aeroelastic simulations have also been performed using higher
order aerodynamic tools such as vortex methods [168] and traditional CFD [83], at a successively
increasing computational cost. The methods have been applied to steady inflow conditions. The
current study is conducted by performing aeroelastic LES of wind turbines using vortex methods
and by further examining the inclusion of shear in the method.

14.2 Contributions and key-results
Contributions A model of shear using vortex methods is established. Aero-elastic simulations
under sheared and turbulence inflow is performed for the first time using a vortex code.

Problem definition and computational setup A wind turbine operating under sheared and
turbulent inflow is considered. The shear and the turbulence are assumed to be given at a distance
upstream of the turbine, while the process responsible for their generation is not modelled. The
insertion of turbulence is identical to what was done in Chapter 13. A sketch of the layout and
the computational domain is shown in figure 14.1. The problem is studied in the context of incom-
pressible flows (here Ma ≈ 0.2. Equation (9.1) is solved using the vortex particle method, and the
lifting line formulation (Configuration 3, in section 9.3). Viscosity is grid filtering is applied as in
Chapter 13.
The computational domain, Din, used in the present study has dimensions 8D×3D×3D as shown
in figure 14.1. The three-bladed Nordtank 500kW stall regulated wind turbine located at one of
DTU Wind Energy’s test sites is modelled. The turbine diameter is D = 2R = 41m and it rotates
at the constant speed Ω = θ̇ = 27.1 RPM. The free-stream velocity is chosen as U0 = 7.5m.s−1 and
the tip-speed ratio is then λ = 7.7. The shear is assumed linear of slope dus/dz = 0.079s−1 so that
the free-stream velocity at the blade tip varies between 6 and 9m.s−1. In the baseline low resolution
case, the domain consists of a grid of 256 × 96 × 96 cells resulting in 2.4M particles. Re-meshing
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Figure 14.1: Sketch and computational setup. Turbulent vortex particles generated by a “turbulence mask”
(represented by a grid), are inserted at each time step. The wind turbine wake is modeled with vortex
particles. The domain is filled with particles (not shown) representing the shear vorticity which are also
inserted at each time step.

is performed every 10 time steps. The time step chosen is dt = 0.086s (dθ = 14◦), while the total
simulation time is 300s.

Representation of shear A uniform shear profile us = us(z)ex is associated to a vorticity
profile ωs = dus

dz ez and the gradient of the velocity field is [∇us] = dus
dz ey ⊗ ez. In all vortex

methods wind turbine simulations known to the author1, the wind shear is included as part of the
“free-stream” U0 [127, 73]. In vortex particle simulations, the term [∇us] should be added to the
gradient [∇uω] in order to include the deformations due to the shear. It is the approach chosen for
instance in the vortex code GENUVP [217]. In such case, the shear deforms the free vorticity, but
the free-vorticity does not deform the shear vorticity and thus equation (9.1) is not fully solved.
This approach will be further referred to as a “frozen shear”.
The full “unfrozen” situation is here considered. The shear vorticity contained within the com-
putational domain is interpolated onto vortex particles. Since the shear vorticity has an infinite
support, the external map from equation (12.4) is used to account for the velocity uext and gradient
[∇uext] due to the vorticity outside of the computational domain. In a time-stepping simulation,
the “shear” vortex particles convecting outside of the domain at the outlet are discarded whereas
new particles are inserted at the inlet. The particles are inserted on a regular grid of spacing h in
the y − z plane of the inlet. The validation of the whole procedure is shown in figure 14.2 for a
step shear and a linear shear. The contribution of the external map from equation (12.4) is crucial
to reconstruct the exact shear and allow long term simulations with the proper deformation of the
vortex particles. The surface map integral is computed using point sources and point vortices which
result in loss of accuracy close to the boundary Din. Small instabilities were observed at the end
of the computational domain due to this point-wise approximation. The rest of the domain is not
seen to be significantly affected by these instabilities as seen in figure 14.2. The use of piecewise
constant surface panels and the account of the principal value of the integral at the surface itself
will increase the accuracy.

Combination of shear and turbulence It was seen in Chapter 13 that the “unfrozen” turbu-
lence tend to loose energy progressively as the eddies evolve away from the mask where they had
been generated. The inclusion of shear is expected to sustain the turbulence. Shear and turbulence
particles are here inserted. When combining shear and turbulence, the velocities on the boundary
∂Din will not be exactly the ones from the undisturbed shear. This is clear at the inlet and outlet
of the turbulence but also on all other boundaries due to the induced velocities of the turbulence

1And the coauthors of the paper [26].
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Figure 14.2: Modelling of shear using vortex particles. Velocity profiles obtained at the center of the domain
for a step shear and a linear shear. The inclusion of the surface map from equation (12.4) is important.
The curved labelled “(end)” is extracted at the end of the simulation. The shear is seen to be conserved
with time despite the numerical error that could be introduced by the re-meshing, numerical stretching and
convection.

vortex particles on ∂Din and due to the interaction between the shear and turbulence particles
which may affect the strength of the shear particles. The difference between the unsteady velocity
at the boundary and the steady state shear velocities are expected to be of second order and they
are here omitted for simplicity. Since meandering occurs, some shear particles might exit the do-
main on one side of the domain and holes may be created on the other side. Shear vortex particles
are also inserted on the sides of the domain when such holes are detected. At the inlet, the shear
particles are inserted as described in section 14.2: More shear vorticity is inserted where the wind
velocity is higher. This approach is not followed for the turbulence as the turbulent particles are
inserted with the free-stream. Further, the turbulence box used to generate the vortex particles is
isotropic and it does not account for an inherent shear. The influence of these two limitations will
be investigated in the future.
The evolution of the turbulence intensity across the domain is shown in figure 14.3 for different
cases. All simulations corresponds to “unfrozen turbulence”. It is observed in the figure that the
frozen shear does not significantly affect the turbulence kinetic energy which is seen to decay in the
same proportion as the non-sheared case. On the other hand, the account for the full interaction is
seen to reduce the decay and a trend towards a stabilisation of the turbulent kinetic energy can be
foreseen. Analysis of the velocity profiles revealed that the shear slope was reduced when the full
interaction was allowed. The turbulence extracts energy from the shear and tends to homogenize
the profile. Troldborg et al. performed CFD simulations with prescribed linear shear and insertion
of turbulence in an upstream plane of the domain [207]. In one of their test cases, the boundary
condition consisted in artificially prescribing the velocity on the lower and higher boundary. This
situation can be linked to the one used here where the surface map is assumed constant. The
authors observed that the inclusion of shear was sustaining turbulence and constant statistical
properties of turbulence were obtained [207]. The current results are not as pronounced but the
difference between the uniform and sheared inflow cases follow the same trends as their results.

Combination of shear and wind turbine Simulations of the Nordtank wind turbine are here
presented for cases of frozen and unfrozen shear. Vorticity contours for the two cases are shown
in figure 14.4. The wake shape shown in the top of figure 14.4 is consistent with vortex segments
simulations performed without the inclusion of the shear vorticity [73]. In the current study, it is
seen that the interaction between shear vorticity and the turbine has an important impact on the
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Figure 14.3: Evolution of the turbulence intensity with the distance from the turbulence insertion point.
Accounting for the interaction between the shear and turbulence (“unfrozen shear”) is seen to increase the
turbulence intensity.

wake shape. The wake does not have such a significant upward motion when the full interaction is
included. This result is consistent with CFD simulations [228]. The cancellation of the longitudinal
vorticity of the wake induced by the shear and the longitudinal vorticity of the shear induced by
the wake is likely to be the source of this result. It can be proven using a simple vortex model
(see Chapter 7, i.e. [67]). For the current simulation, the omission of this interaction leads to an
overestimation of 4% of the power and 1% of the thrust.

Vorticity

0.0 1.1

0.2 0.4 0.6 0.8 1.0

Figure 14.4: Vorticity contours in the wake of the turbine (x ∈ [0D, 6D]) for the case of frozen (top) and
unfrozen (bottom) shear. For ease of comparison, the upstream shear vorticity ωs = dus/dzey was removed
to the local vorticity in the lower plot. The ground effect is not included in either plots. The interaction
between the shear vorticity and the turbine has an important impact on the wake shape and a moderate
impact on loads.

Aeroelastic LES of wind turbine with shear and turbulence A proof of concept of the
applicability of the different models to aero-elastic wind turbine simulations is presented here using
the HAWC2 and OmniVor tools. Turbulent simulations with different modelling of shear are
run. The simulation time for the full unfrozen case, was 7h30 with 160 CPUs using the tree-code
algorithm. A total of 1h was spent in the iterative interaction with the structural code. Many future
optimizations of the code are yet possible since new bottlenecks appeared in this study. Further
speed up will be obtainable by using the Poisson solver and by optimizing the re-meshing procedure
(accounting for 30min here). Results are shown in figure 14.5. The vertical lines corresponds to
values obtained using the BEM aerodynamic module of HAWC2 without turbulence. Both the BEM
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and vortex code predicts a reduction of loads and power when shear is present for the simulated
operational conditions. Unfreezing the shear is seen to reduce the power mean value but increases
its standard deviation. Little impact is seen on the flap-wise moment. Further investigations will
be the topic of future work.
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Figure 14.5: Probability density functions of power and flap-wise moments for turbulent aeroelastic sim-
ulations perform using the vortex code coupled with HAWC2 under different shear conditions: no shear,
frozen shear, unfrozen shear. The turbulence intensity is TI = 12% (see figure 14.3 at x = 0). Vertical lines
represent BEM value for TI = 0%, P0 = 148kW, Mf,0 = 1.36kNm. Unfreezing the shear is seen to reduce
the power but has little influence on the flapwise moment.

14.3 Conclusions
Vortex particle methods were applied to turbulence, shear, a wind turbine and the combinations
of these cases. A Neumann to Dirichlet map was used to account for the vorticity outside of the
domain in the modelling of shear. The interaction of the shear and turbulence vorticity was seen to
avoid the decay of turbulent kinetic energy. If shear is present but the interaction is not a two-way
interaction, the decay occurs. The interaction of the shear and the wind turbine vorticity appeared
of importance both for the wake shape and the loads. The possibility to perform aero-elastic
simulations of wind turbine under sheared and turbulent conditions was demonstrated. Future
work should address the possibility to include unsteady boundary conditions in the method, more
consistent SGS models, and further investigate the different interactions of vorticity.
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Conclusion

Simple vortex models and numerical vortex methods were used to investigate specific aerodynamic
problems relevant to wind turbines. A general purpose vortex code was implemented and coupled
to an aero-servo-elastic solver in order to perform aeroelastic simulations. The conclusions from
the different studies were presented in each chapter.

1. Right cylindrical vortex wake model - Infinite number of blades
The main vortex model investigated was the cylindrical vortex wake model of an infinitely-bladed
rotor as introduced by Joukowski in 1912.
- The elementary system of a rotor of constant spanwise circulation was further studied in this
thesis for the finite and infinite tip-speed ratio cases. The model is equivalent to 1D momentum
theory in the infinite tip-speed ratio case. The advantage of the vortex model lays in the possibility
to obtain the velocity in the entire domain, in particular upstream of the rotor.
- A rotor model of radially varying circulation was constructed using a superposition of such el-
ementary systems. If arbitrary circulation values are given to the different vortex cylinders, the
kinematic jump-condition across the vortex sheets is in general not satisfied. By consideration of
the kinematics across the vortex sheets in the far wake, the condition required to form a consistent
vortex system was obtained for the finite and infinite tip-speed ratio cases.
- It was seen that the superposition of cylindrical models leads to the radial independence of annuli
in the infinite tip-speed ratio case. Consequently, the model is identical to that of a BEM algorithm
provided the three following conditions: the number of blade is infinite, the drag contribution is not
accounted for in the determination of the BEM induced velocities, and the loading is azimuthally
constant. The fact that the drag contribution should be omitted goes along the line of other authors’
work.
- In the finite tip-speed ratio case, the independence of annuli does no longer hold and the analysis
showed the importance of the thrust contribution induced by the wake rotation. This contribution
is omitted in most BEM implementation or implemented in a different way than the one obtained
in the current study.
- An example of implementation of the cylindrical vortex wake model to unsteady inflow was shown
and proved to give consistent results with measurements and existing dynamic inflow models.
The model can be used for further tuning of dynamic inflow models, or for analysis requiring the
knowledge of the unsteady velocity field in a part of the domain different than the rotor disk.
- Application of the cylindrical model to a step-shear inflow in the infinite tip-speed ratio case
showed that 1D momentum theory is valid in a local sense, i.e. using the local “free-stream”
velocity. The model did not predict any cross-shear deflection of the wake.

Future work
- A way to include wake expansion in the cylindrical wake model should be found
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- A way to relax the assumption of azimuthally constant circulation should be found. The work of
Drees [60] may be relevant, it was nevertheless not available to the author. The use of indicial [14,
124, 158] functions could be considered.
- Concerning the pressure drop due to wake rotation the following should be addressed: provide the
details of a BEM implementation, perform comparison between Actuator disk and vortex cylinder
results, investigate whether a possible performance gain can be obtained.
- Velocity fields from Actuator disk simulations should be compared with the fields from a super-
position of cylinders.
- The validity of the shear model using numerical vortex methods should be investigated.

2. Helical vortex wake model
The helical vortex wake model by Joukowski was used to investigate tip-losses and optimal circu-
lation theory (in Appendix D).
- A tip-loss factor based on the analytical formulae of semi-infinite helical vortex was devised. The
new formulation is more representative of the wake geometry than the one derived by Prandtl.
The results are consistent with Glauert’s formulation of Prandtl’s tip-loss factor, but Glauert’s
formulation was seen to imply more tip-losses.
- The analytical wake expansion model from Theodorsen (based on Goldstein’s circulation) was
applied to the wind energy case. The effect of wake expansion on tip-losses was investigated using
numerical analysis. It revealed that tip-losses are reduced due to wake expansion. This implies
that further overestimation of tip-losses is expected when using Glauert’s formulation.
- The analysis revealed that wake deformation had limited impact on tip-losses.
- As part of this study, a BEM-like helical vortex wake code was implemented. The determination
of the pitch angle based on the velocity triangle was not seen sufficient for high thrust cases. It is
recommended instead to determine the helical pitch of each trailed filaments according to the pitch
relationship found in the cylindrical case.

Future work
- High-quality flow and loads measurements at the tip of a rotor are required to validate the gain
in performance of the new tip-loss factor compared to Glauert’s formulation. Such measurements
are usually challenging. The use of CFD data can also be considered. The complex performance of
the airfoil in the tip-region will unfortunately add a lot to the uncertainty of the results. Means of
abolishing the angle of attack could help the study.
- Further applications of the helical vortex wake code should be considered.
- The derivation of approximate closed-form formulae for the velocity field induced by a semi-infinite
helical filaments in the vicinity of the rotor plane would be of interest. In particular, the formulation
could be used coupled with beam theory to perform analytical aero-elastic gradient optimization.

3. Skewed cylindrical wake model - Yaw conditions
Coleman and his co-authors used a skewed cylindrical model to investigate yawed rotor of infinite
tip-speed ratio. The model forms the basis of current BEM yaw models.
- The skewed cylindrical wake model was further investigated under the condition of finite tip-
speed ratio. The induced velocities in the entire domain from the different vorticity components
were derived using semi-analytical formulae. The semi-analytical method is appealing in terms of
computational time compared to actuator disk CFD. The analysis focused first on a single cylinder.
For even faster evaluations, empirical relations were derived on the rotor disk.
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- By comparison of the induced velocities in the skewed and right cylinder case, it was possible to
derive corrections to be applied in a BEM algorithm. This effectively extends the current BEM
yaw model to the case of finite tip-speed ratio. The new yaw model showed better agreement in
average with vortex code simulations. The analysis revealed that further gain could be obtained if
a superposition of cylinders was used.
- The extension of the BEM yaw model to a superposition of cylinders was partially presented. The
model benefits from the determination of the pitch angle of each cylinder obtained in the analysis
of the superposition of right cylinders. The model further requires the determination of empirical
formulae in the entire rotor plane and not only in the rotor disk. Empirical formulae for the main
component, namely the tangential vorticity, were provided.

Future work
- Empirical formulae outside of the rotor disk should be derived for the longitudinal vorticity.
- The BEM implementation of the yaw model using a superposition of skewed cylinders should be
finalized and validated against measurements and simulations.
- Velocity fields obtained using the superposition of cylinders should be compared to Actuator disk
simulations.

4. Implementation of a vortex code for aero-elastic simulations
- A multi-purpose vortex code, OMNIVOR, was implemented as part of this study and coupled to
the aero-servo elastic code HAWC2.
- The code was validated against measurements, CFD simulations and analytical results.

Recommendations
- Low-order vortex segments methods are simple to implement. The benefit of using such methods
for steady simulations does not appear justified since the obtained results were in high-agreements
with BEM simulations. The method is nevertheless of relevance for cases that challenge the un-
derlying BEM assumptions: unsteady inflow, yaw, winglets, swept blades, etc. The methods was
not used to its fullest yet on these applications. To the author’s opinion, the motives to chose such
methods are: 1. the ease of implementation, 2. the possibility to separate the effects from different
vorticity sources: trailed, shed, bound, turbulence, wake, shear, etc.
- The difficulty of implementation of high-order vortex particle methods is not so far from the
one of the vortex segment method. The apparent difficulty might come from the large amount
of mathematical results and historical methods presented in the literature and reference books,
which can be discouraging at first. The two complications that appear in particles methods are:
1. the need to compute the velocity gradient/deformation tensor, 2. the need to correct the fact
that the vorticity field is not divergence free. The first point is easily implemented. The second
is difficult to account for in grid-free simulations, but a redistribution procedure can moderate the
error. Apart from these two points, particles offer more options than vortex segments methods and
can reach high-order accuracy. The inherent (and important) problem of Lagrangian distortion is
easily solved by remeshing. Viscous diffusion can be accurately accounted for in grid-free and grid-
based formulations. Acceleration techniques such as multipole expansions are simple to implement.
The author would recommend implementing a low-order particle method at first. Then consider
a tree-code implementation. Tree-based algorithm are of high relevance to vortex methods since
they can be used in many applications: induced velocity evaluation, boundary elements/panels
evaluations, surface integrals evaluations in Poisson solvers, etc. Extending the method to grid-
based vortex methods could then be considered to obtain scalable computational times and benefit
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from all the grid-based tools available to make the computation accurate and extensible to complex
flows (viscous flows, LES, compressible flows).
- The modelling of bodies and boundary layers is possible in many ways using vortex methods.
Yet, it is the author’s opinion that Eulerian methods are more adapted to such problems. The
use of an Eulerian code around bodies coupled to a Lagrangian vortex code is believed to be a
formulation that takes the best from both worlds. Such coupling was successfully achieved in 2D
and 3D compressible flows by Papadakis and Voutsinas at NTUA [155].

Future work
- The low-order vortex segment formulation should be used further to investigate the BEM-
challenging topics: unsteady inflow, yaw, winglets, swept blades, etc.
- The low-order vortex code could be used in optimization framework such as OpenMDAO.
- Specific aero-elastic simulations should be run using the vortex code. In particular, results should
be compared with the different in-house aerodynamic models which are coupled to HAWC2 : BEM,
full rotor CFD, Actuator disk CFD and near-wake models. Simple validation cases using an oscil-
lating blade at standstill can be considered.
- The high-order particle method was implemented in a late stage of this study and would require
more validation and code polishing.
- Results from the high-order particle methods should be compared to actuator-line CFD, with and
without LES models.
- A coupling between an Eulerian code and the current code could be considered in view of better
accounting for bodies and boundary layers.

5. Investigation of complex inflows
The implemented vortex code was applied to wind turbines in complex inflows. This step required
a preliminary study on the possibility to reconstruct a given velocity field using vortex particles.
- The different sources of errors that could result from the application of a vortex particle approach
to reconstruct a velocity field were considered. The spatial discretization is an unavoidable source
of error. Different methods to account for an infinite support of vorticity were mentioned. A surface
integral corresponding to the Neumann to Dirichlet map can allow the computational domain to
be finite. With no such account, clipping the vorticity support results in an important source of
error. The error is yet limited to a buffer layer near the boundary of the domain. Consequently,
a reconstruction of high quality can be obtained within a certain domain by sufficiently extending
the vorticity support.
- The velocity reconstruction method was applied to a turbulent field. The study investigated the
influence of a wind turbine on the upstream turbulence. The contribution from the wind turbine and
its wake was not seen to significantly influence the statistical properties of turbulence upstream of
the turbine. The study also revealed that the full account of turbulence in vortex methods was not
justified to a first approximation for the study of wind turbine aerodynamics and wake dynamics.
Using external and frozen turbulence boxes appeared satisfactory.
- The modelling of shear using vortex particle methods was possible by consideration of a constant
Neumann to Dirichlet map. It was possible to reproduce any wind shear profile and sustain it
in a time-stepping simulation. The interaction of the shear and turbulence vorticity was seen to
avoid the decay of turbulent kinetic energy. If shear is present but the interaction is not a two-way
interaction, the decay occurs. The interaction of the shear and the wind turbine vorticity appeared
of importance both for the wake shape and the loads.
- The possibility to perform aero-elastic simulations of a wind turbine with shear and turbulence
using a pure vortex particle formulation was demoustrated.

100



CONCLUSION

Future work
- Aeroelastic simulations in complex inflows should be compared with simulations from CFD solvers
and measurements.
- The account of the Neumamn to Dirichlet map in a time-stepping simulation should be addressed.
The map should be updated at each time step if the flow field external to the domain is varying. Fur-
thermore, a proper account of the flux through the domain surface should be done: Changes within
the computational domain will affect the velocity field at the boundary. Simplified assumptions
and compromises can be used in a first investigation stage.
- A proper account of shear in vortex methods is challenging. The questions raised can be partially
solved if the unsteady Neumann to Dirichlet map mentioned above is properly handled. Another
approach would consist in accounting for the boundary layer responsible for the shear. This can
be achieved using an Eulerian or Lagrangian solver. In both cases, the longitudinal extent of the
computational domain will reach drastic proportions in order for the boundary layer to be fully
developed when it reaches the wind turbine.

6. Final words
Clearly the current work only scratched the surface of the innovations possible using vortex-based
methods. Both low-order and high-order numerical vortex methods can contribute to the research
of wind turbine aerodynamics and aeroelasticity in the future. The author particularly like the
“idealization” procedure mentioned in the introduction, and the possibility to decompose the effects
from different vorticity sources. These approaches were seen to offer great potential and it is hoped
that this study will inspire further work.
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AppendixA
Vortex cylinders and vortex disk

A.1 Right cylinder of tangential vorticity with arbitrary cross
section

A right cylinder of tangential vorticity γt of arbitrary cross-section extending along the z-axis from
z1 and z2 is considered. The cylinder volume is delimited by the surfaces S1 at z = z1, S2 at z = z2
and Sc in between. Sc is the only support of vorticity.

A.1.1 Velocity in terms of solid angle
Introduction The velocity induced by a vortex loop of constant intensity γtdz′ is given in the
book of Saffman [170] as:

du(x) = γtdz
′

4π ∇Ω(x, z′) (A.1)

where Ω(x, z′) is the solid angle of the vortex loop centered on z′ as seen from the point x and
where the gradient is taken at x. Since all the vortex loops of the cylinder have the same shape
and radii, the solid angle is a function of z′ − z, and will be further written: Ω(x, y, z′ − z). The
convention Ω > 0 when z′ > z is adopted and the gradient ∂Ω/∂z > 0 with z′ fixed. The total
velocity is obtained by integration

u(x) = γt
4π

ˆ z2

z1

∇Ω(x, y, z′ − z) dz′ (A.2)

Considering only the axial component, the integrand is ∂Ω
∂z dz

′. Introducing the change of variable
ζ = z′ − z:

uz(x) = γt
4π

ˆ z2

z1

∂Ω
∂z

(x, y, z′ − z) dz′ = γt
4π

ˆ ζ2

ζ1

∂ζ

∂z

∂Ω
∂ζ

(x, y, ζ) dζ = − γt4π

ˆ ζ2

ζ1

dΩ(x, y, ζ) (A.3)

Care should be used when integrating the solid angle since it is discontinuous at ζ = 0 when the
point of evaluation is within the cylinder cross section. Also the same sign convention should be
used for each elementary angle dΩ. The dependency with respect to x and y is dropped in the
following.

Outside of the cylinder If x is not contained within the cylinder, then the solid angle is
continuous and:

uz(x) = γt
4π [Ωz(ζ1)− Ωz(ζ2)] (A.4)

Above the subscript z has been added to specity that the normal to Si has been taken as ez for
the evaluation of both solid angle. Since the control point is outside of the cylinder, the solid angle
of the closed surface S1 ∪ Sc ∪ S2 is zero:

Ωtot = Ω−z(ζ1) + Ωc(ζ1, ζ2) + Ωz(ζ2) = 0 (A.5)
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where Ωc is the solid angle subtented by the cylinder surface Sc. Since S1 is contained in a plane
normal to ez, Ω−z(ζ1) = −Ωz(ζ1), and thus:

uz(x) = γt
4πΩc(x, y, ζ1, ζ2) (A.6)

Inside the cylinder The solid angle experiences a discontinuity at ζ = 0. The cylinder is split
into three cylinders by dividing the original cylinder at ζ = ±ε, with ε > 0. For the two cylinders
such that |ζ| > ε, the control point is outside of the cylinders and the induced velocity is readily
obtained using either equation (A.4) or equation (A.6). The cylinder delimited by ζ = ±ε is
now considered. Within this interval dΩ is discontinuous, but the discontinuity is finite and the
integral can be carried on. Since dΩ is odd the integral is 0. The total velocity field is then, using
equation (A.4):

uz(x) = γt
4π lim

ε→0+
[Ωz(ζ1)− Ωz(−ε) + Ωz(ε)− Ωz(ζ2)] = γt

4π

[
Ωz(ζ1)− Ωz(ζ2) + 2 lim

ε→0+
Ωz(ε)

]
(A.7)

where Ωz(−ε) = −Ωz(ε) has been used since Ω is odd. Given the convention chosen that Ω > 0 for
ζ > 0, the limit is 2π and the velocity is:

uz(x) = γt
4π [Ωz(ζ1)− Ωz(ζ2) + 4π] (A.8)

Alternatively equation (A.4) can be used using the solid angle of the two cylinder surfaces such
that |ζ| > ε to give:

uz(x) = γt
4π lim

ε→0+
[Ωc(ζ1,−ε) + Ωc(ε, ζ2)] = γt

4πΩc(ζ1, ζ2) (A.9)

General expression By comparison of equation (A.6) and equation (A.9) the follwoing expres-
sion is obtained for the velocity induced by the cylinder of arbitrary cross section:

uz(x) = γt
4πΩc(x, y, ζ1, ζ2) (A.10)

where Ωc is the solid angle of the surface of the cylinder. The above formula can also be used for
points on the boundary of the cylinder.

A.1.2 Infinite and semi-infinite cylinders of arbitrary cross sections
Infinite cylinder The velociy inside the cylinder is constant, equal to the vortex sheet strength
γt, and is 0 outside of the cylinder. This is direclty obtained from the results of section A.1.1 with
Ωz(ζ1) = Ωz(ζ2) = 0, or by considerating that the surface Sc is equivalent to a closed surface for
the determination of Ωc.
This result was proved by the author using simple considerations in [67], but is also bound in the
book of Batchelor [9, p. 98].

Semi-infinite cylinder The velociy for ζ → +∞ is the same as the infinite cylinder. The velociy
for ζ → −∞ is 0 since the solid angle decreases with the distance. For ζ = 0, the velocity is 0
outside of the cylinder and γt/2 inside the cylinder since for these two cases Ωc = 0 and Ωc = 2π.

A.2 Right vortex cylinder of tangential vorticity - Circular
cross section

Part of the results presented in this section were published in [23], [26].

124



APPENDIX A. VORTEX CYLINDERS AND VORTEX DISK

The right vortex cylinder with tangential vorticity is not only a classical fluid-dynamic but also
magnetostatic problem. The model of a rotor using a semi-infinite vortex cylinder was introduced in
1912 by Joukowski [94]. Joukowski presented analytical results using direct integration of the Biot-
Savart equation. The results were not explicitly written in elliptic integral. The author nevertheless
mentioned this possibility In 1926, Müller [143] derived analytical formulae for the magnetic field
of a finite solenoid based on the mutual inductance of two circular rings. Foelsch also discussed the
topic in 1936 [64]. In 1960, Callaghan and Maslen [37] presented formulae based on the derivation
of the vector potential. Their work can be applied in fluid-dynamics to obtain the velocity field
induced by the tangential vorticity of a right vortex cylinder. In 1974, analytical formulae were
also derived by Gibson [69], following a different approach than the previous authors. His results
are based on a general Lemma and the use of integration by parts. The current author used direct
integration to express the induced velocity field from a finite and semi-infinite cylinder. Results are
summarized in [23] but more details are given below.

A.2.1 Solenoid - Finite cylinder
Introduction A finite vortex cylinder of circular cross section is considered. Notations are pre-
sented in figure A.1. The cylinder has a radius r0 and extends along the z axis between the
coordinates z1 and z2 so that its total length is L = z2−z1. The vorticity is solely in the tangential
direction and reduces to the vortex sheet forming the surface of the cylinder of equation r = r0.
No vorticity is assumed to be present in the inlet z = z1 and outlet z = z2 planes of the cylinder.
Using the δ-Dirac function and the Π-gate function, this can be formalized as:

ω(x) = γt Π[z1,z2](z) δ(r − r0) eθ (A.11)

(r0, θ
′, z′)

za ez

er

eθ

x = (r, θ, z)

α1

z2z1
α2

γt

L

Figure A.1: Polar coordinate system used for vortex cylinder.

The Biot-Savart law writes in terms of vector potential:

ψ(x) = 1
4π

ˆ
V

ω(x′)
‖x− x′‖

r0dθ
′dr′dz′ = γt

4π

ˆ
V

Π[z1,z2](z′)δ(r′ − r0)eθ(θ′)
‖x− x′‖

r0dθ
′dr′dz′ (A.12)

= γtr0

4π

ˆ z2

z1

ˆ 2π

0

eθ(θ′)
[r2 + r2

0 − 2rr0 cos(θ′ − θ) + (z − z′)2]
1
2
dθ′dz (A.13)

In term of velocity u = ∇×ψ, the Biot-Savart law writes:

u(x) = −γt4π

ˆ z2

z1

ˆ 2π

0

(x− x′)× eθ(θ′)
‖x− x′‖3

r0dθ
′dz′ (A.14)

= γtr0

4π

ˆ z2

z1

ˆ 2π

0

(z − z′)er(θ′)− [r cos(θ′ − θ)− r0] ez
[r2 + r2

0 − 2rr0 cos(θ′ − θ) + (z − z′)2]
3
2
dθ′dz′ (A.15)
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In these formulae, one recognizes the vortex rings formulae integrated over z. As a result of this,
it is known that the integration over θ can be done analytically. Yet, analytical formulae may be
obtained if the integration over z is done first.

Simplifications (axi-symmetry) Similar simplifications to the ones introduced for the vortex
rings are applied. From azimuthal symmetry it will be assumed that the control point is located
in the plane x− z, and thus θ = 0. Then, er may be replaced by cos θex and eθ(θ′) by cos θ′ey.

Velocity on axis On the ring axis, r = 0 and θ = 0, the radial velocity is 0 by symmetry and
the Biot-Savart law equation (A.15) reduces to:

uz(0, 0, z) = γtr
2
0

4π

ˆ z2

z1

ˆ 2π

0

1
[r2

0 + (z − z′)2]
3
2
dθdz′ = −γt2

[
ζ√

r2
0 + ζ2

]z−z2
z−z1

= γt
2 (cosα1 − cosα2) (A.16)

where α is the half-angle of the cone formed by a point on the axis and a ring on the cylinder as
sketched in figure A.1.

Velocity on axis - Using solid angle Equation (A.16) may also be found by integration of
the solid angle formula [170].. The cylinder may be seen as a superposition of infinitesimal vortex
rings. Considering such a ring at position z′, then the solid angle of this ring viewed by the control
point on the axis is the one of a cone

Ω = 2π
ˆ 1

cosα
dcos θ = 2π(1− cosα) (A.17)

where α is the cone half angle as illustrated in figure A.1, such that:

cosα = z − z′√
(z − z′)2 + r2

0
(A.18)

For an infinitesimal distance dz′, the ring intensity is γtdz′. The elementary velocity induced by
this ring is:

du(0, 0, z) = −γtdz
′

4π ∇Ω = −γtdz
′

4π
∂Ω
∂z
ez (A.19)

By integration along the cylinder axis, introducing the change of variable ζ = z−z′, and eventually
using equation (A.17):

uz(0, 0, z) = −γt4π

ˆ z2

z1

∂Ω
∂z

dz′ = γt
4π

ˆ ζ2

ζ1

∂Ω
∂ζ

∂ζ

∂z
dζ = γt

4π [Ω(ζ2)− Ω(ζ1)] (A.20)

= γt
2 [cosα1 − cosα2] (A.21)

which confirms equation (A.16).

General equation - Vector potential - Work of Callaghan and Maslen and extension
The axi-symmetry simplifications mentioned previously are used. Primes are dropped for the inte-
gration variable θ′. The vector potential equation (A.13) reduces to is tangential component and
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may be further manipulated as follow [37]:

ψθ(x) = γtr0

2π

ˆ z2

z1

ˆ π

0

cos θ
[r2 + r2

0 + (z − z′)2 − 2rr0 cos θ]
1
2
dθdz′ (even function of θ)

= −γtr0

2π

ˆ π

0

ˆ ζ2

ζ1

cos θ
[r2 + r2

0 + ζ2 − 2rr0 cos θ]
1
2
dζdθ (ζ = z − z′) (A.22)

= −γtr0

2π

ˆ π

0
cos θ

[
ln
(
ζ +

√
ζ2 + C(θ)

) ]ζ2
ζ1
dθ (ζ integration) (A.23)

where for the last step ∂
∂ζ ln

(
ζ +

√
ζ2 + C(θ)

)
= [ζ + C(θ)]−1/2 has been used with C(θ) =

r2 + r2
0 − 2rr0 cos θ. Equation (A.23) may be rearranged by integrating by part over θ:

ψθ(x) = −γtr0

2π

[ˆ π

0
cos θ ln

(
ζ +

√
ζ2 + C(θ)

)
dθ

]ζ2
ζ1

(rearranging limits) (A.24)

= −γtr0

2π

[sin θ ln
(
ζ +

√
ζ2 + C(θ)

)]π
0
−
ˆ π

0

rr0 sin2 θ√
ζ2 + C(θ)

(
ζ +

√
ζ2 + C(θ)

)dθ
ζ2
ζ1

The first term is zero due to the values taken by sin θ. The second term may be further reduced
by multiplying by

√
ζ2+C(θ)−ζ√
ζ2+C(θ)−ζ

, to give:

ψθ(x) = γtr
2
0r

2π

ˆ π

0

sin2 θ
(√

ζ2 + C(θ)− ζ
)

√
ζ2 + C(θ)C(θ)

dθ

ζ2
ζ1

(A.25)

= γtr
2
0r

2π


[ˆ π

0

sin2 θ

C(θ) dθ
]ζ2
ζ1

−

[ˆ π

0

ζ sin2 θ√
ζ2 + C(θ)C(θ)

dθ

]ζ2
ζ1

 (expanding numerator)

= −γtr
2
0r

2π

[ˆ π

0

ζ sin2 θ√
ζ2 + C(θ)C(θ)

dθ

]ζ2
ζ1

(since [cst]ζ2ζ1 = 0) (A.26)

Callaghan stops his calculation here, but the expression found for Aθ may be extended further into
elliptic integrals. This is done by introducing φ = θ/2 and m0 = m(ζ = 0),

ψθ(x) = −γtr
2
0r

2π

[
ζ

ˆ π

0

sin2 θ√
ζ2 + r2 + r2

0 − 2rr0 cos θ)(r2 + r2
0 − 2rr0 cos θ)

dθ

]ζ2
ζ1

(A.27)

= −γtr
2
0r

2π

[
2ζ
√
m

2√r0r

m0

4r0r

ˆ π/2

0

sin2(2φ)√
1−m cos2 φ(1−m0 cos2 φ)

dφ

]ζ2
ζ1

(A.28)

and using sin2(2φ) = 4(cos2 φ− cos4 φ)):

ψθ(x) = −γtr
2
0r

2π
m0

(r0r)3/2

[
ζ
√
m

ˆ π/2

0

cos2 φ− cos4 φ√
1−m cos2 φ(1−m0 cos2 φ)

dφ

]ζ2
ζ1

= − γt2π

√
r0

r
m0

[
ζ
√
m(I1 − I2)

]ζ2
ζ1

(A.29)
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The first integral, noted I1, is expressed by using the following manipulation of the numerator
cos2 φ = 1

m0
(m0 cos2 θ − 1 + 1):

I1 =
ˆ π/2

0

cos2 φ√
1−m cos2 φ(1−m0 cos2 φ)

dφ = 1
m0

[Π(m0,m)−K(m)] (A.30)

For the second integral, the idea is first to transform cos4 to make the product (1−m0 cos2 φ)(1 +
m0 cos2 φ) appear. Usual −1 + 1 operations are successively used:

I2 =
ˆ π/2

0

cos4 φ√
1−m cos2 φ(1−m0 cos2 φ)

dφ

= 1
m2

0

ˆ π/2

0

m2
0 cos4 φ− 1 + 1√

1−m cos2 φ(1−m0 cos2 φ)
dφ

= 1
m2

0

[ˆ π/2

0

−(1 +m0 cos2 φ)√
1−m cos2 φ

dφ+ Π(m0,m)
]

= 1
m2

0

[
−K(m)− m0

m

ˆ π/2

0

m cos2 φ− 1 + 1√
1−m cos2 φ

dφ+ Π(m0,m)
]

= 1
m2

0

[
−K(m)− m0

m
(K(m)− E(m)) + Π(m0,m)

]
(A.31)

Inserting the values of I1 and I2 into equation (A.29), gives the following final form for the vector
potential:

ψθ(x) = − γt2π

√
r0

r

1
m0

[
ζ
√
m
((

1−m0 + m0

m

)
K(m)− m0

m
E(m) + (m0 − 1)Π(m0,m)

)]ζ2
ζ1

(A.32)
where it is recalled that m = m(ζ), m0 = m(0) and this equation may be expressed with the
variable k since m = k2.

General equation - Velocity from direct derivation of vector potential The general
velocity equations for the finite cylinder may be obtained by derivation of the vector potential as:

ur = −∂ψθ
∂z

(A.33)

uz = 1
r

∂ (rψθ)
∂r

= 1
ρ
ψθ + ∂ψθ

∂r
(A.34)

For this purpose, one may take the integrated form with elliptic functions equation (A.32) and use
the derivatives formulae of the elliptic functions to eventually obtain:

ur(r, z) = γt
2π

√
r0

r

[
2− k2

k
K
(
k(ζ)2)− 2

k
E
(
k(ζ)2)]ζ2=z−z2

ζ1=z−z1
(A.35)

uz(r, z) = − γt
4π√rr0

[
ζk(ζ)

(
K
(
k(ζ)2)+ r0 − r

r0 + r
Π
(
k(0)2|k(ζ)2))]ζ2=z−z2

ζ1=z−z1
(A.36)

with
m(ζ) = k(ζ)2 = 4rr0

ζ2 + (r + r0)2 (A.37)

The velocity field induced by a finite vortex cylinder is illustrated in figure A.2.

General equation - Velocity from indirect derivation of vector potential The approach
chosen by Callaghan [37] consisted in using the integral forms of the vector potential. This approach
is less direct but less tedious than having to derive the elliptic integrals as in the previous paragraph.
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Figure A.2: Streamlines and velocity field induced by a finite vortex cylinder illustrated using Line Integral
Convolution(LIC) flow visualization. The Cylinder is contained within the planes |z/r0| ≤ 2 and |r| = r0.
The vortex intensity is γt = −1.

For the radial component, the integral form equation (A.22) is used and combined to derivation
properties of integrals,

d

dz

ˆ z2

z1

f(z)dz =
[
f(z)]

]z2
z1

(A.38)

gives directly:

ur(r, z) = −dψθ
dz

= −dψθ
dζ

dζ

dz
= −dψθ

dζ
= γtr0

2π

[ˆ π

0

cos θ
[r2 + r2

0 + ζ2 − 2rr0 cos θ]
1
2
dθ

]ζ2
ζ1

(A.39)

The above equation may be expressed in the form of elliptic integrals without difficulty. Equa-
tion (A.35) is readily obtained with this method, and we can further observe that:

ur(r, z) = [ψθ,Ring(r, z′)]z−z2z−z1 (A.40)
For the derivation of the longitudinal component, one may evaluate first ∂ψθ/∂r using the integral
form of equation (A.24):

∂ψθ
∂r

= −γtr0

2π

[ˆ π

0
cos θ ∂

∂r
ln
(
ζ +

√
ζ2 + C(θ)

)
dθ

]ζ2
ζ1

(A.41)

= −γtr0

2π

[ˆ π

0
cos θ r − r0 cos θ√

ζ2 + C(θ)(ζ +
√
ζ2 + C(θ))

dθ

]ζ2
ζ1

(A.42)

The steps steps used from equation (A.25) to equation (A.26) are applied to the above integral to
eventually give:

∂ψθ
∂r

= γtr0

2π

[ˆ π

0
ζ cos θ r − r0 cos θ√

ζ2 + C(θ)C(θ))
dθ

]ζ2
ζ1

(A.43)

Using equation (A.43) and equation (A.26) one obtains:

uz = 1
ρ
ψθ + ∂ψθ

∂r
= γtr0

2π

[ˆ π

0

ζ(r cos θ − r0)√
ζ2 + C(θ)C(θ)

dθ

]ζ2
ζ1

(A.44)
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The same steps as the one used for equation (A.27) are applied:

uz = γtr0

π

[
ζ

ˆ π/2

0

(r cos(2φ)− r0)√
ζ2 + C(2φ)C(2φ)

dφ

]ζ2
ζ1

(φ = θ/2)

= γtr0

π

[
ζ

√
m

2√rr0

m0

4rr0

ˆ π/2

0

2r cos2 φ− (r + r0)√
1−m cos2 φ(1−m0 cos2 φ)

dφ

]ζ2
ζ1

(A.45)

= γtr0

π

1
2√rr0

m0

4rr0

[
ζ
√
m
(
2rI1 − (r + r0)Π(m0,m)

)]ζ2
ζ1

(A.46)

= γtr0

π

1
2√rr0

m0

4rr0

[
ζ
√
m

2r
m0

(
Π(m0,m)−K(m)− m0

2r (r + r0)Π(m0,m)
)]ζ2

ζ1

(A.47)

= − γt4π
1
√
rr0

[
ζ
√
m
(
K(m) +

(m0

2r (r + r0)− 1
)

Π(m0,m)
)]ζ2

ζ1
(A.48)

and equation (A.36) is readily obtained.

General equation - Velocity from Biot-Savart law - Indefinite form [23] Instead of using
the vector potential, the Biot-Savart law from equation (A.15) may be integrated directly. In this
perspective, the indefinite integral over z in equation (A.15) will be determined below. From the
axi-symmetry of the flow it may be assumed without loss of generality that the control point lays in
the x axis, i.e. θ = 0, and that the radial component of the field may be seen as the x-component.
We will write eρ this fake Cartesian representation of the radial component, which is such that
eθ(θ′) = cos θ′eρ. Using these assumptions equation (A.15) becomes:

uz
′
(x) = γtr0

4π

ˆ 2π

0

ˆ
z′

(z − z′) cos θ′eρ − [r cos(θ′)− r0] ez
[r2 + r2

0 − 2rr0 cos(θ′) + (z − z′)2]
3
2
dz′dθ′ (A.49)

The notation C(θ) = r2 + r2
0 − 2rr0 cos(θ) is introduced and the change of variable ζ = z − z′ is

applied with dζ = −dz′. Noting that the integrand over θ′ is periodic and an even function the
integration limit may be reduced to obtain:

uζ(x) = −γtr0

2π

ˆ π

0

ˆ
ζ

ζ cos θ′eρ − [r cos(θ′)− r0] ez
[C(θ′) + ζ2]

3
2

dζdθ′ (A.50)

The integrals over ζ are straightforward using the following relations:ˆ
dζ

(C + ζ2) 3
2

= ζ

C
√
C + ζ2

,

ˆ
ζdζ

(C + ζ2) 3
2

= −1√
C + ζ2

(A.51)

So that equation (A.50) becomes

uζ(x) = γtr0

2π

ˆ π

0

cos θ′√
C(θ′) + ζ2

eρ + [r cos(θ′)− r0]
C(θ)

√
C(θ′) + ζ2

ezdθ
′ (A.52)

The presence of square root of cosine terms evoke elliptic integrals. As a result of this the change
of variable φ = θ/2 is introduced, so that cos θ = cos(2φ) = 2 cos2 φ− 1 :

uζ(x) = γtr0

π

ˆ π/2

0

2 cos2 φ− 1√
C(2φ) + ζ2

eρ +
[
2r cos2 φ− (r0 + r)

]
C(2φ)

√
C(2φ) + ζ2

ezdφ (A.53)

Developing the expression C(2φ) = (r0 + r)2 − 2rr0 cos2 φ, the parameter for the elliptic integral is
readily determined and defined as:

m(ζ) = k(ζ)2 = 4rr0

(r0 + r)2 + ζ2 (A.54)

The components of the integral are now treated separately. The radial component is successively
reduced by factorizing the elliptical parameter then noting that 2 cos2 φ = 2

m (m cos2 φ− 1 + 1− m
2 )
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and using the definition of the complete elliptic integrals of the first and second kind noted K and
E respectively. The steps are as follow:

uζr(x) = γtr0

π

√
m

2√rr0

ˆ π/2

0

2 cos2 φ− 1√
1−m cos2 φ

dφ (A.55)

= γtr0

π

√
m

2√rr0

[
− 2
m
E(m) + 2

m

(
1− m

2

)
K(m)

]
(A.56)

= γt
2π

√
r0

r

[
2− k2

k
K(k2)− 2

k
E(k2)

]
(A.57)

The parameter m or k is used indifferently, and the dependence of these parameters with respect
to ζ has been dropped to shorten notations. For the longitudinal component the factorization of
the elliptic parameters leads to

uζz(x) = γtr0

π
ζ

√
m

2√rr0

m0

4rr0

ˆ π/2

0

2r cos2 φ− (r + r0)√
1−m cos2 φ(1−m0 cos2 φ)

dφ (A.58)

where the notation m0 = m(0) is used. By definition of the elliptic integral of the third kind Π,
the above equation writes:

uζz(x) = γtr0

π

1
2√rr0

m0

4rr0

[
ζ
√
m
(
2rI1 − (r + r0)Π(m0,m)

)]
(A.59)

where I1 has been introduced since it is an integral that needs further development. Using cos2 φ =
1
m0

(m0 cos2 φ − 1 + 1) and the definitions of elliptic integrals the following expression is obtained
for I1:

I1 =
ˆ π/2

0

cos2 φ√
1−m cos2 φ(1−m0 cos2 φ)

dφ = 1
m0

(Π(m0,m)−K(m)) (A.60)

Inserting equation (A.60) in equation (A.59) leads to:

uζz(x) = γtr0

π

1
2√rr0

m0

4rr0

[
ζ
√
m

2r
m0

(
Π(m0,m)−K(m)− m0

2r (r + r0)Π(m0,m)
)]

(A.61)

= − γt4π
1
√
rr0

[
ζ
√
m
(
K(m) +

(m0

2r (r + r0)− 1
)

Π(m0,m)
)]

(A.62)

= − γt4π
1
√
rr0

[
ζk

(
K(k2) + r0 − r

r0 + r
Π(k2

0, k
2)
)]

(A.63)

General equation - Velocity from Biot-Savart law - Finite cylinder [23] The indefinite
integral forms obtained in equation (A.57) and equation (A.63) may be used on a known interval.
Assuming a cylinder extends from z1 to z2 then the induced velocities are simply:

usol,r(x) = γt
2π

√
r0

r

[
2− k2

k
K(k2)− 2

k
E(k2)

]ζ2=z−z2

ζ1=z−z1
(A.64)

usol,z(x) = − γt4π
1
√
rr0

[
ζk

(
K(k2) + r0 − r

r0 + r
Π(k2

0, k
2)
)]ζ2=z−z2

ζ1=z−z1
(A.65)

A regularization of these equations is given in section A.2.3.

A.2.2 Semi-infinite cylinder

Results for the semi-infinite cylinder derive directly from the results of the finite cylinder. Results
from this section were published in [23].
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Introduction and notations An infinite vortex cylinder of circular cross section is considered.
Notations are presented in figure A.3. The cylinder has a radius r0 and extends along the z axis
between the coordinates z = 0 and z = +∞.

x

er(ψ)

eψ(ψ) ≡ eθ(ψ)
x = (r, θ, z)

y

z

x′ = (R, θ′, z′)ψ

γb

γt

Figure A.3: Polar coordinate system used for infinite vortex cylinder.

The Biot-Savat law for the vector potential and velocity is given by equation (A.13) and equa-
tion (A.15) using z1 = 0 and z2 → +∞.

Induced velocity field The induced velocity field for the semi-infinite cylinder is obtained with
z1 = 0 and z2 → +∞. For the r component the limit when z2 tends to +∞ is zero. For the z
component the limit as z2 → +∞ has different value for radii lower or greater than r0. The bracket
notation could have been used as in equation (B.7), but the same result may be obtained by using
an absolute value expression. The results from these calculation leads to:

ur,cyl(r, z) = − γt2π

√
r0

r

[
2− k2

k
K
(
k(z)2)− 2

k
E
(
k(z)2)] (A.66)

uz,cyl(r, z) = γt
2

[
r0 − r + |r − r0|

2|r − r0|
+ zk(z)

2π√rr0

(
K
(
k(z)2)+ r0 − r

r0 + r
Π
(
k(0)2|k(z)2))] (A.67)

where
k2(z) = m(z) = 4rr0

(r0 + r)2 + z2 (A.68)

and the dependency in r was omitted to shorten notations. The velocity field induced by a semi-
infinite vortex cylinder is illustrated in figure A.4.

Flow near the axis and on the axis The velocity field near the axis is obtained via a Taylor
series of the formulae:

ur,t(r � r0, z) = −γt4
rr2

0

(r2
0 + z2)3/2 +O(r5/2), uz,t(r � r0, z) = γt

2

[
1 + z√

r2
0 + z2

]
+O(r).

(A.69)
The axial induction exactly on the axis can be directly obtained by simple application of equa-
tion (A.16) (integration of the Biot-Savart law) or equation (A.21) (gradient of the solid angle, as
e.g. Stepniewski and Keys [200, p. 155], van Kuik [212]).

Axial induction: analysis of the different terms involved equation (A.67) consists of the
sum of three terms. The contribution of the different terms involved is shown in figure A.5. Absolute
values are used in this equation to conveniently write in mathematical form the discontinuity of
the first term at r = r0. This first term is the only one that remains when z = 0. As z → +∞,
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Figure A.4: Streamlines and velocity field induced by a vortex cylinder illustrated using Line Integral
Convolution(LIC) flow visualization. The plane of observation interesects the ring at z = 0 and |r| = r0.
The vortex intensity is γt = −1.

the sum of the two terms involving elliptical integrals tends to γt/2 for r < r0 and tends to 0 for
r > r0. Both the elliptic integral of the third kind and the absolute value term have discontinuities
at r = r0. The term involving the elliptic integral K is always continuous. When z < 0, the sum
of all three terms is such that the solution is continuous with respect to r and tends to zero as
z → −∞. On the other hand, for z > 0, the axial velocity is discontinuous with a jump of value
equal to −γt between the upper and inner part of the vortex cylinder. This jump is half for z = 0.
For all values of z the axial induction is always highest for r < r0 than for r ≥ r0. Axial velocity
contours and streamlines are shown in figure A.6.
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Figure A.5: Contribution of the different terms of equation (A.67) to the total axial induction at three
different axial positions.

Axial induction at particular locations The axial induced velocity is seen to be constant
in the rotor plane by inserting z = 0 in equation (A.67) and is also constant in the far-wake by
evaluation of the limit of the elliptic integrals. The values at these locations are:

uz,t(r, 0) =
{

0
γt
2

}
(A.70)

uz,t(r, z → +∞) =
{

0
γt

}
(A.71)
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where the upper value of the bracket correspond to r > r0 and the lower value to r < r0. The
velocity at the vortex sheet is the average of the value on the upper and lower bracket value [69]. This
is true for all positive values of z. Noting that the third term of equation (A.67) is antisymmetric
around r = r0, the axial induction on the cylinder itself reduces to:

uz,t(r = r0, z > 0) = γt
4 + γt

2
zk(z)

2π√rr0
K
(
k2(z)

)
), (A.72)

As previously mentioned, the vortex sheet induces across it a velocity jump in the axial direction
of intensity −γt between the velocities in the outer and the inner part. This jump is exactly half
on the leading edge of the cylinder.

Note on the radial induction The radial velocity is an even function of the variable z, i.e.
ur,t(−z) = ur,t(z). It is continuous in the entire domain except at the cylinder’s leading edge. In
the far wake, the radial velocities tends to zero and the flow is purely in the axial direction. In
particular, equation (A.66) can be evaluated at the rotor for r < r0. It can also be evaluated on
the cylinder itself where it is seen to be non-zero. This means that there is flow going through the
cylinder (see discussion by Lewis [116, p. 168] about the leakage through the wall of the semi-infinite
cylinder near the free-end side). This is indeed required to satisfy continuity since the cross-sectional
area of the cylinder remains constant while the axial velocity varies by a factor 2. The flow thus
tends to move the vortex sheet towards a more realistic shape. The converged vortex system, when
the vortex sheet is allowed to expand and the convection velocity varies along the wake, has an
axial induction that corresponds well with the one from the tangential vorticity cylinder of constant
strength [152].
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Figure A.6: Semi infinite vortex cylinder velocities. Axial velocity contour plot normalized by 2r0/γt (left).
Streamlines for γt = −1 m/s reveals the strong singularity at the cylinder rim and the radial flow through
the cylinder surface (right).

A.2.3 Regularization of the cylinder’s equations
A simple regularization of the cylinder’s equation consists in introducing a cut off length ε in the
denominator of the elliptic parameter k, namely:

mε(ζ) = k2
ε (ζ) = 4rr0

(r + r0)2 + ζ2 + ε2
(A.73)

The singularity mainly concerns the radial component of the velocity, so it may be chosen to
regularize only this component. The regularized expression of k can be used for the indefinite form
of the radial component (equation (8.2)) but also in the definite form of the radial component of the
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semi-infinite cylinder (equation (A.66)). The longitudinal component do not present a singularity,
but a discontinuity at r = r0 when z >= 0. The regularization presented above will remove the
discontinuity. For this, the parameter k(0) should also be replaced by kε(0) in both the indefinite
and definite forms: equation (A.65) and equation (A.67). For the latter equation, uz,cyl ,the limit
needs to be evaluated again which will affect the first term as follow:

γt
2

[
1
2

(
1 + r0 − r

(r0 + r)
√

1− kε(0)2

)
+ zkε(z)

2π√rr0

(
K
(
kε(z)2)+ r0 − r

r0 + r
Π
(
kε(0)2|kε(z)2))]

Developing the first term:
γt
2

[
1
2

(
1 +

(r0 − r)
√

1 + ε2/(r0 + r)2√
(r0 − r)2 + ε2

)
+ zkε(z)

2π√rr0

(
K
(
kε(z)2)+ r0 − r

r0 + r
Π
(
kε(0)2|kε(z)2))]

It is seen that when ε = 0 the non regularized form (equation (A.67)) is retrieved.

A.3 Vortex cylinder of longitudinal vorticity
The result presented in this section were published in [23].

A.3.1 Introduction
A semi-infinite vortex cylinder of circular cross-section is considered. Notations are presented in
figure A.7. The cylinder has a radius R and extends along the z-axis between the coordinates z1 = 0
and z2 → +∞. The vorticity is assumed to be solely in the longitudinal direction. It reduces to
the vortex sheet forming the surface of the cylinder so that at a point x = (r, ψ, z) the vorticity is:
ω(x) = γz Π[z1,z2[(z) δ(r −R) ez.

x

er(ψ)
eψ(ψ) ≡ eθ(ψ)

x = (r, θ, z)

y

z

x′ =
(R, θ′, z′)γl

ψ

γb

Figure A.7: Vortex cylinder of longitudinal vorticity and coordinate system.

A.3.2 Properties
The longitudinal vorticity component of the cylinder will induce a tangential velocity component
only. For an infinite cylinder this velocity would be 0 within the cylinder and equal to Γtot/2πr
outside of the cylinder. This result can be obtained from the definition of the circulation and the
axi-symmetry of the flow. Γtot may be expressed in terms of γl as Γtotez = γl2πR. The tangential
velocity outside of the infinite cylinder is then γlR/r. The result from the infinite cylinder is valid
for the far-wake of the semi-infinite cylinder, i.e. for z → +∞. By geometrical consideration, the
induced velocity from the semi-infinite cylinder on the rotor plane is half the far-wake value:

uψ,l(r, 0) =
{
γlR
2r
0

}
, uψ,l(r, z → +∞) =

{
γlR
r
0

}
, (A.74)
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where the upper value of the bracket correspond to r > R and the lower value to r < R. The
velocity at the vortex sheet is the average of the value on the upper and lower bracket value. The
vortex sheet induces across it a velocity jump in the tangential direction of intensity γl between the
outer and inner part of the cylinder. This jump is half on the leading edge of the cylinder. These
results may be verified from the full analytical expression derived in section A.3.3.

A.3.3 Derivation by direct integration

The Biot-Savart law in term of velocity writes:

u(x) = γzR

4π

ˆ z2

z1

ˆ 2π

0

reθ(ψ)−Reθ(θ′)
[r2 +R2 + (z − z′)2 − 2rR cos(θ′ − ψ)]

3
2
dθ′dz′. (A.75)

Using the axi-symmetry of the problem only the tangential component remains:

uθ(x) = γzR

4π

ˆ z2

z1

ˆ 2π

0

r −R cos θ′

[r2 +R2 + (z − z′)2 − 2rR cos θ′]
3
2
dθ′dz′. (A.76)

The integration over z can be readily done and would lead to an integrated form that would match
the one of a semi-infinite filament and only the integral over θ would need to be computed. Yet, this
step may be skipped by using the following analogy. The form taken by equation (A.76) directly
recalls the one found in the study of the solenoid (see equation (A.50)). The same integration steps
may be followed to eventually lead to the indefinite form:

uθ(x) = − γz4π
1√
rR

R

r

[
ζk

(
K(k2)− R− r

R+ r
Π(k2

0, k
2)
)]ζ2=z−z2

ζ1=z−z1
. (A.77)

Using z1 = 0 and the limit as z2 → +∞ the tangential velocity component induced by the system
of trailed vorticity is obtained as:

uθ(r, z) = γz
2
R

r

[
r −R+ |R− r|

2|R− r| + zk(z)
2π
√
rR

(
K
(
k2(z)

)
− R− r
R+ r

Π
(
k2(0), k2(z)

))]
, (A.78)

where the function k is defined in equation (A.68).

k2(z) = 4rR
(r +R)2 + z2 (A.79)

The result is consistent with the one found by Gibson1 [69] though the procedure leading to it is
different.

A.3.4 Derivation using semi-infinite vortex lines

It is possible to obtain the result presented in section A.3.3 by using a continuous distribution of
semi-infinite vortex lines. The induced velocity for a semi-infinite vortex line is given in [23].
The variation of the azimuthal velocity computed with equation (A.78) with the axial position is
shown in figure A.8. The factor two between the far-wake and the rotor plane velocities can be
seen on the figure. As expected from equation (A.78), the velocity tends to 0 for all regions far
from the cylinder edge and is anti-symmetric with respect to z for r < R.

A.4 Bound vortex disk
The result presented in this section were published in [23].

1In his article, the value VC has been mistyped and should read VC = 1/(2r).
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Figure A.8: Tangential velocity induced by the longitudinal part of the tip vortices. Velocities at the rotor
plane are half the ones in the far-wake plane. On these planes, the velocity is 0 for r < R, and equal to
Γtot/4πr and Γtot/2πr for r > R. The velocity tends to 0 for all regions far from the cylinder edge and is
anti-symmetric with respect to z for r < R.

Introduction The circular vortex disk illustrated in figure A.9 is considered. The disk of radius
R is normal to the z-axis and its origin is located at z = z0. The vorticity is assumed to be purely in
the radial direction. Axi-symmetry in the vortex distribution is further assumed and as a result of
this the induction will be purely tangential. The cross-product in the Biot-Savart law implies that
the bound vortex disk induces only velocity in the tangential direction. This velocity is zero on the
z-axis given the axi-symmetry of the problem. The induced velocity from the disk is also zero on
the rotor plane. The vorticity field at a point x = (r, θ, z) is ω(x) = γb(r) Π[0,R](r) δ(z − z0) er(θ)
, where γb is given by:

γb(r) = Γtot

2πr er (A.80)

The Biot-Savart law writes:

ez

er(θ′)

eθ(θ′)
x′ = (r′, θ′, z0)

x = (r, θ, z)

γb(r′)

Figure A.9: Polar coordinate system used for the computation of the bound vortex disk induction.

u(x) = 1
4π

ˆ
V

ω(x′)× (x− x′)
|x− x′|3

r′ dr′ dθ′ dz′ (A.81)

= − 1
4π

ˆ 2π

0

ˆ R

0
γb(r′)

(z − z0)eθ(θ′)− r sin(θ − θ′)ez
[r2 + r′2 + (z − z0)2 − 2rr′ cos(θ − θ′)]

3
2
r′dr′dθ′ (A.82)

= −Γtot

4π2

ˆ π

0

ˆ R

0

(z − z0)eθ(θ′)
[r2 + r′2 + (z − z0)2 − 2rr′ cos(θ − θ′)]

3
2
dr′dθ′ (A.83)

The z-component vanishes since the integrand is an odd, 2π-periodic function. From the axi-
symmetry of the problem, θ will be assumed to be zero and eθ(θ′) replaced by cos θ′et where
et = eθ(0). z0 will further be chosen as zero.
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Indefinite form of the Biot-Savart law Since the vorticity tends to infinity as r → 0, a
singular behavior is expected at this point. The indefinite form of the Biot-Savart integral in r′,
written ur′θ , is thus sought first. Using the simplifications discussed in the previous paragraph, the
integration over r′ of equation (A.82) is readily obtained to give:

ur
′

θ (x) = −Γtot

4π2

ˆ π

0

ˆ
r′
z cos θ′ 1

[r2 + r′2 + z2 − 2rr′ cos θ′]
3
2
dr′ dθ′ (A.84)

= −zΓtot

4π2

ˆ π

0
cos θ′ r′ − r cos θ′

(r2 + z2 − r2 cos2 θ′)
√
r2 + r′2 + z2 − 2rr′ cos θ′

dθ′. (A.85)

The first term in the denominator may be expanded into a product as:
r2 + z2 − r2 cos2 θ′ =

(√
r2 + z2 + cos θ′

)(√
r2 + z2 − cos θ′

)
. (A.86)

Using this expansion, the form of equation (A.85) recalls the definition of the elliptic integral of
the third kind. To reveal this similarity in form the change of variable φ = θ/2 is introduced.
The integration interval is reduced to [0, π/2] and squared cosine terms appear since cos(2φ) =
2 cos2 φ− 1. It leads to:

ur
′

θ (x) = −zΓtot

2π2

ˆ π/2

0

r′ cos(2φ)− r cos(2φ)2

(r2 + z2 − r2 cos(2φ)2)
√

(r + r′)2 + z2 − 4rr′ cos2 φ
dφ (A.87)

= zΓtot

2π2

√
m

2
√
rr′

n1

2r
n2

2r

ˆ π/2

0

r′
(
2 cos2 φ− 1

)
− r

(
2 cos2 φ− 1

)2
(1− n1 cos2 φ)(1− n2 cos2 φ)

√
1−m cos2 φ

dφ, (A.88)

where the following parameters have been introduced to recall elliptic integral forms:

m = 4rr′

(r + r′)2 + z2 , n1 = 2r
r +
√
r2 + z2

, n2 = 2r
r −
√
r2 + z2

. (A.89)

Three integrals are introduced for their subsequent use:

I3 =
ˆ π/2

0

2 cos2 φ− 1
d1d2ds

dφ, I4 =
ˆ π/2

0

4(cos4 φ− cos2 φ)− 1
d1d2ds

dφ, I5 =
ˆ π/2

0

1
d1d2ds

dφ,

with d1 = 1 − n1 cos2 φ, d2 = 1 − n2 cos2 φ and ds =
√

1−m cos2 φ. With these notations,
Equation (A.88) becomes

ur
′

θ (x) = −zΓtot

2π2

√
m

2
√
rr′

1
z2 [r′I3 − rI4] , (A.90)

where the relation n1n2 = −4r2/z2 has been used to simplify the expression. The integrals are
solved by decomposing them into partial fractions to reveal expressions of the elliptic integral
of the third kind. The integral I3 may be reduced my manipulation of its numerator as follow:
2 cos2 φ − 1 =

(
n1 cos2 φ− 1 + 1

)
/n1 +

(
n2 cos2 φ− 1 + 1

)
/n2 − 1 and and further noting that

1/n1 + 1/n2 = 1. Alternatively it is possible to proceed to identification on the coefficient a and b
that are such that the integrand of I3 is split as: a/(d1ds) + b/(d2ds). The identification leads to
a = (n2 − 2)/(n1 − n2) = −1/n1 and b = (2 − n1)/(n1 − n2) = −1/n2 and the expression of I3 is
readily obtained as:

I3 = − 1
n1

Π(n2,m)− 1
n2

Π(n1,m). (A.91)

The integral I4 is now to be evaluated. Given the relation between n1 and n2 mentioned above, it
is observed that:

(1− n1 cos2 φ)(1− n2 cos2 φ) = 1 + n1n2(cos4 φ− cos2 φ). (A.92)
Isolating the term (cos4 φ− cos2 φ) and inserting it into the definition of I4 leads to:

I4 = 4
n1n2

ˆ π/2

0

1√
1−m cos2 φ

dφ+
(

1− 4
n1n2

)
I5 = −z

2

r2 K(m) + r2 + z2

r2 I5. (A.93)

138



APPENDIX A. VORTEX CYLINDERS AND VORTEX DISK

The integrand of I5 is split into two fractions as was done previously and the identification of
the coefficients leads to a = −n2/(n1 − n2) and b = n1/(n1 − n2). This decomposition gives the
following expression for I5:

I5 = 1
n1 − n2

[n1Π(n1,m)− n2Π(n2,m)] . (A.94)

The indefinite integral expression equation (A.90) may now be developed using equation (A.91),
(A.93) and (A.94):

ur
′

θ (x) = − Γtot

4π2z

√
r

r′
z2

r2
√
m [K(m) + T1 Π(n1,m)− T2 Π(n2,m)] , (A.95)

with T1 and T2 given in equation (A.99) if R is replaced by r′.

Definite form of the Biot-Savart law The definite form of the Biot-Savart integral is readily
obtained from equation (A.95) to give the influence of the bound vorticity disk as: uθ,b(x) =
uRθ (x)− lim

r′→0
ur
′

θ (x). The evaluation of the limit gives:

lim
r′→0

ur
′

θ (x) = Γtot

4πr

[
|z|
z
− z√

r2 + z2

]
. (A.96)

The total velocity field induced by the bound vortex disk is then:

uθ,b(x) = Γtot

4π

{
1
r

[
z√

r2 + z2
− |z|

z

]
− 1
πz

√
r

R

z2

r2
√
m [K(m) + T1 Π(n1,m)− T2 Π(n2,m)]

}
(A.97)

with

T1 =
(√
r2 + z2 − r

)
(r +R)− z2

2z2 (A.98)

T2 =
(√
r2 + z2 + r

) (√
r2 + z2 +R

)
2z2 (A.99)

and

m = 4rR
(r +R)2 + z2 , n1 = 2r

r +
√
r2 + z2

, n2 = 2r
r −
√
r2 + z2

(A.100)

An alternate form of equation (A.97) can be obtained using the definition of circulation and the
induced velocities from the root-vortex and the longitudinal tip-vorticity (see [23], section A.3).

Properties The disk generates a jump of velocity across it as:
ub(r, 0+)− ub(r, 0−) = γb × n, (A.101)

where the normal to the disk n is taken along the vector ez. From equation (A.80) and equa-
tion (A.101) it is clear that the velocity jump is purely tangential. This result is expected since
the velocity is solely in the tangential direction. Observing that the velocity field is anti-symmetric
with respect to z, equation (A.101) leads to

uψ,b(r, 0−) = −uψ,b(r, 0+) =
{

0
Γtot
4πr

}
. (A.102)

The above result may also be obtained by a careful evaluation of the limit of equation (A.97) as z
tends to zero. The induced velocity field at different axial position downstream of the rotor disk is
plotted in figure A.10. Far from the disk the induced velocity tends to zero.
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Figure A.10: Tangential velocity induced by the bound vortex disk at different axial positions downstream
of the disk in the wind turbine convention. From anti-symmetry with respect to z, the velocity field is zero
at z = 0 and is opposite upstream of the disk.

A.5 Skewed vortex cylinders
A.5.1 Skewed cylinder of tangential vorticity - Semi-numerical integra-

tion
The application of the Biot-savart law in this study takes the following dimensionless form:

I = C

ˆ 2π

0

ˆ +∞

0

a′ + b′z′

(a+ bz′ + cz′2)3/2 dz
′dθ (A.103)

= C

ˆ 2π

0

[
−2
[
2
(
ab′2 − a′bb′ + ca′2

)
+ (bb′ − 2a′c) (a′ + b′z′)

]
b′(4ac− b2)

√
a+ bz′ + cz′2

]+∞

0

dθ (A.104)

where the indefinite integral in z′ can be found in the book of Peirce [157, p. 28]. The definite
integral written Iz′ is evaluated through the limit as z′ tends to infinity to lead equation (A.106).
The last form of equation (A.106) corresponds to the one presented by Castles and Durham [39]. To
facilitate the comparison, notations from this reference are compared to the ones of this document
in table A.1.

Iz′ = 1√
c

+ 2(2ab′ − a′b)√
a (4ac− b2)

+ 4c(a′ − a) + b(b− 2b′)√
c (4ac− b2)

(A.105)

= 2 (a′
√
c+ b′

√
a)√

ac (2
√
ac+ b)

= 1√
c

a′ + b′√
c

√
a

√
a
(√

a+ b
2
√
c

) (A.106)

This result was applied to obtain the induction of the tangential vorticity given in equation (4.2)
after making sure that the integral over z had no physical dimension. The velocity induced at
any point by the tangential vorticity is obtained by numerical integration over θ. As a control
point approaches the vortex cylinder the integral becomes singular and the result from numerical
integration will depend on the number of quadrature points. In the cases tried, a number of
quadrature points of 600 gave a relative error lower than 0.05% when compared to the value
obtained with 10000 points. Examples of adaptive or semi-analytical treatment of the singularity
can be found in the work of Voutsinas and Bergeles for similar integrals [216]. For simplicity,
the integrals can also be regularized by adding a small positive constant in the denominator. In
the current study, no specific treatment of the singularity was done since sufficient accuracy was
obtained for the control points of interest. The control points were taken such that |r̃ − 1| < 0.01
and a fixed number of 600 quadrature points was used.
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Table A.1: Table of equivalence between notations used in Castles and Durham article [39] and the current
document.

Current a′ b′ a b c −b/2
√
c b/

√
c

Castles and Durham A a C b c D B

A.5.2 Skewed vortex cylinder - Extension of the work of Castles and
Durham

A point on the skewed cylinder surface S will be written in Cartesian coordinates x′ = (R cos θ′ +
mz′, R sin θ′, z′) with m = tanχ. The evaluation of the Biot-Savart law at a control point of
Cartesian coordinates x = (r cosψ, r sinψ, z) writes:

u(x) =
ˆ
S

γt(x′)× (x− x′)
4π|x− x′|3

Rdθ′dl′

= γt
4π

2πˆ

0

+∞ˆ

0

(z − z′)er(θ′) + (R− r cos(θ′ − ψ) +mz′ cos θ′)ez
|x− x′|3

Rdθ′dl′

where the infinitesimal length along the skewed wake dl′ is
√

1 +m2dz′ and with:
|x− x′|2 = R2 + r2 + z2−2rR cos(θ′−ψ) + (2mR cos θ′−2z−2rm cosψ)z′+ (1 +m2)z′2 (A.107)
The coefficients introduced in section A.5.1 are directly obtained by identification for the Cartesian
variables (x, y, z) and by projection for (r, ψ). They are given in eqs. (4.2)-(4.3) with C =

{
γt
4π
√
c
}
.

{a, b, c} =
{
R2 + r2 + z2 − 2rR cos(θ′ − ψ), 2mR cos θ′ − 2mr cosψ − 2z, 1 +m2}

{a′x, b′x} = R {z cos θ′, − cos θ′} {a′z, b′z} = R {R− r cos(θ′ − ψ), m cos θ′} . (A.108)
{a′y, b′y} = R {z sin θ′, − sin θ′} (A.109)

Further, using the polar coordinates at the control point the azimuthal and radial velocities are
immediately obtained by expressing eψ and eψ and using the above coefficients:
{a′ψ, b′ψ} = R {z sin(θ′ − ψ), − sin(θ′ − ψ)} , {a′r, b′r} = R {z cos(θ′ − ψ), − cos(θ′ − ψ)} ,

(A.110)
be directly applicable the integral over z should have no physical dimension. This is why the
variable R has to be present in the coefficients a′ and b′ and not be associated with the variable
C. Equivalently, all length may be made dimensionless by division by R. This choice would give
relations identical to equation (A.108)-(A.110) for R = 1 and the variables r, z being dimensionless.
The application of equation (A.106) leads to

u•,t(r, ψ, z) = γt
4π

ˆ 2π

0

2 (a′•
√
c+ b′•

√
a)√

a (2
√
ac+ b)

dθ′ = γt
4π

ˆ 2π

0

a′• + b′•√
c

√
a

√
a
(√

a+ b
2
√
c

) dθ′ (A.111)

where the symbol • stands indifferently for x, y, z, ψ or r. It should be noted that a simplification
of the factor

√
c was performed in equation (A.111). The rearrangement leading to the second form

of equation (A.111) is done for ease of comparison with the work of Castles and Durham [39].
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A.5.3 Skewed vortex cylinder - Longitudinal axis - Work of Coleman et
al.

The axial velocity from the Biot-Savart law applied to a control point on the fore-aft diameter is
directly obtained from results of the previous section by ψ = ψ0 = 0 and z = 0:

uz,t(r, ψ0) = γt
4π

2πˆ

0

+∞ˆ

0

[(R− r cos θ′ +mz′ cos θ′)ez] R
√

1 +m2dθ′dz′

[R2 + r2 − 2rR cos θ′ + (2mR cos θ′ − 2rm)z′ + (1 +m2)z′2]
3
2

(A.112)

Identification with the results from section A.5.1 gives c = 1 +m2, C = γt
4π
√
c,

{a, b} =
{
R2 + r2 − 2rR cos θ′, 2mR cos θ′ − 2mr

}
{a′, b′} = R {R− r cos θ′,m cos θ′}

The difference in coordinate systems implies that θ′ and χ (and thus m) have opposite signs com-
pared to the original article [46]. Integration of equation (A.106)(left) with respect to θ′ is done
term by term. The first term is constant and integrates directly to γt/2. The second term is shown
to be zero from symmetry. If the third term is left in integral form this leads to:

uz,t(r, ψ0) = γt

[1
2 + m

√
1 +m2r̃

2π

π̂

0

sin2 θ′ dθ′√
1 + r̃2 − 2r̃ cos θ′

(
1 + r̃2 − 2r̃ cos θ′ +m2 sin2 θ′

)] (A.113)

where the notation r̃ = r/R is introduced since dimensionless quantities are required to apply
results of section A.5.1. Coleman et al. split the integral into two partial fractions corresponding
to term 3 and 4 of equation (B5) of their article [46]. The first fraction leads to an elliptic integral
of the first kind while the other leads to two elliptic integrals of the third kind and two of the
first kind, but the two latter cancel out. Details will be provided in the following paragraph where
alternative forms are provided. The axial induced velocity on the fore-aft diameter ψ = 0 is:

uz,t(r, ψ0) = γt
2

[
1 + 2r̃

√
1 +m2

mπ
K
(
r̃2)

− r̃(r̃ + 1)
4mπ
√
m2 + r̃2

[(
b1 + j2)Π

(
−b1, j2)+

(
b2 − j2)Π

(
b2, j

2)] ] (A.114)

with

k2 =
(

1− r̃
1 + r̃

)2
, j2 = 1− k2, m± =

√
1 +m2 ±

√
r̃2 +m2

1 + r̃
, b1 = m2

+ − 1, b2 = 1−m2
−

Alternative forms Assuming the the following form for uz,t:
uz,t(r, ψ, χ) = uz,0 [1 +Kz,t(r, χ) cosψ] (A.115)

the identification with equation (A.113) for ψ = 0 leads to

Kz,t = r̃m
√

1 +m2

π

π̂

0

sin2 θ′√
1 + r̃2 − 2r̃ cos θ′

(
1 + r̃2 − 2r̃ cos θ′ +m2 sin2 θ′

)dθ′ (A.116)

Coleman et al. split the integral into two partial fractions:

Kz,t = −r̃
√

1 +m2

πm

ˆ π

0

−1√
1 + r̃2 − 2r̃ cos θ

+
√

1 + r̃2 − 2r̃ cos θ
1 + r2 − 2r cos θ +m2 sin2 θ

dθ (A.117)

Which gives:

Kz,t = 2r̃
√

1 +m2

mπ
K
(
r̃2)− r̃(r̃ + 1)

2mπ
√
m2 + r̃2

[(
b1 + j2)Π

(
−b1, j2)+

(
b2 − j2)Π

(
b2, j

2)] (A.118)

The integral form of the equation may be preferred since the two elliptic terms involved are two
large numbers of opposite sign which can pose numerical difficulties [34]. Introducing the change
of variable φ = θ/2 into equation (A.116) and noting that (r̃ − cos(2φ))2 cos2 χ + sin2(2φ) =
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1
1+m2

(
1 + r̃2 − 2r̃ cos(2φ) +m2 sin2(2φ)

)
then the following alternative form is found:

Kz,t = 2r̃ sinχ
π

π/2ˆ

0

sin2(2φ)√
(1 + r̃)2 − 4r̃ cos2 φ

[
(r̃ − cos(2φ))2 cos2 χ+ sin2(2φ)

]dφ (A.119)

The change of variable ε = π/2 − φ will transform the integral of equation (A.119) into the same
integral as the one presented in reference the book by Burton et al. [34]. The flow expansion
function Ft may be defined as:

Ft(r̃, χ) = Kz,t(r̃, χ)
2 tan χ

2
= Kξ,t(r̃, χ)

sec2
(
χ
2
) (A.120)

The comparison with [34] is possible using this. In the first edition typographical errors are found.
In the second edition an approximate formula is provided. From the definition of the flow expansion
given here, equation (A.115) writes:

uz,t(r, ψ, χ) = uz,0

[
1 + 2Ft(r̃, χ) tan χ2 cosψ

]
(A.121)

It is observed that the flow expansion varies only slightly with χ so the dependency with respect
to this variable may be dropped [34]. Øye [153] suggested the following fit to the function Ft:

Ft(r̃) ≈ 0.5
(
r̃ + 0.4r̃3 + 0.4r̃5) (A.122)

A.5.4 Infinite skewed cylinder with longitudinal vorticity
The velocity field induced by an infinite cylinder of elliptic cross-section is considered. The vorticity
along the cylinder is not constant and is distributed according to the skewed vortex model presented
in [24]. Using a symmetry analysis similar to the one of Katsoff [87] with rotation of the system
by an angle π with respect to each of the Cartesian axis shows that: ux is an even function of y
and an odd function of x, while uy is an odd function of x and an even function of y. Further, the
investigation of two vortex points on the ellipse symmetric with respect to x or with respect to y
shows that ux = 0 for ψ = π/2 and uy = 0 for ψ = 0. The velocity field is 0 on both axis from the
same symmetry result. It will be proven below that the velocity field is actually zero everywhere
inside the ellipse. Two proofs are given.

Stream function analysis in elliptic coordinate system The vortex system may be seen
as a continuous distribution of 2D vortex points distributed along an ellipse {a cos θ, b sin θ}. It is
assumed that the ellipse lays in the (x− y)-plane and a > b. The intensity of each vortex point is
written Γ = Rγldθ. A vortex point located at a point x′ induces a velocity field du(x) = Γ

2π|x−x′|e⊥

where e⊥ is the unitary vector orthogonal to (x− x′) which in 2D is: ez × (x− x′)/|x− x′|. The
vorticity of a single point vortex is dω = curl (du) = ezΓδ(x − x′). The full velocity field can
be obtained from the knowledge of the stream function. The stream function in two dimensions
is related to the vorticity vector from the Poisson’s equation: ∆ψ = −ωz ≡ −ω · ez. Given the
geometry of the problem, an elliptic coordinate system is introduced with coordinates (µ, θ) as
x = c coshµ cos θ and y = c sinhµ sin θ. The considered ellipse corresponds to a fixed value µ = µ0
with a = c sinhµ0 and b = c sinhµ0. The total vorticity is obtained upon integration of dω over
the ellipse:

ω = curlu = Rγl

ˆ 2π

0
δ(x− x′(θ′))dθ′ ez

= Rγl

ˆ 2π

0
δ(x− a cos θ′)δ(y − b sin θ′)dθ′ ez (A.123)

The determinant of the Jacobian related to the change to elliptical variables, written D, is such
that the elementary area in the plane is: dA = dxdy = Ddµdθ, where D = c2(cosh2 µ + cos2 θ).
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Thus, Equation (A.123) writes in elliptical variables:

ω = Rγl

ˆ 2π

0
D−1δ(µ− µ0)δ(θ − θ′)dθ′ ez = RγlD

−1δ(µ− µ0) ez (A.124)

Using equation (A.124), Poisson’s equation in (µ, θ) variables is:

D−1
(
∂2ψ

∂µ2 + ∂2ψ

∂θ2

)
= −RγlD−1δ(µ− µ0). (A.125)

The common factor on both side is strictly positive and can be simplified. Since the source term
is purely a function of µ, the method of integration by separation of variable is reduced to find a
solution depending only µ, i.e. ∂

2ψ
∂µ2 = −Rγlδ(µ−µ0) for which a solution compatible with u(0) = 0

is: ψ = −RγlH(µ − µ0) · (µ − µ0), where H(x) is the Heaviside function. The stream function is
constant and equal to zero within the ellipse, which implies the same for the velocity field. Further,
this result shows that outside of the ellipse the streamlines are confocal ellipses. The full velocity
field can be determined analytically by computing the partial derivatives of the stream function.

Contribution from points on the same line - Viewing angle A geometrical approach is
presented here to show that the induced velocity inside the circle and the ellipse are zero. The
case of the circle is considered first. The elementary velocity induced by two infinitesimal curved
segments of the circle at a control point P are considered. The elementary segments dlA and dlB
are centered respectively around point A and B such that APB forms a straight segment (see left of
figure A.11). The angle from which both paired segment are viewed from P is dβ. Since the vorticity

B
α

A

P

α
A

P α

dβ

B’

A’

P’
VA

VB

dlA

Figure A.11: Notations used for the integration of paired elementary length viewed from the same angle at
a given control point..

is constant along z, the induced velocities from the two segments will be in opposite direction. It
is yet to be proven that these intensities have the same magnitudes. The total velocity at P is
obtained upon integration over all pairs of such elementary segments. The total velocity is thus
obtained upon integration of β from 0 to π.
The angle formed by the normal to AB and the tangent of the circle is the same for both points
and written α. Using figure A.11(middle), the length of each segment is obtained as:

dlA cosα = PA dβ, dlB cosα = PB dβ (A.126)
where PA and PB refer to the length of the segments. The vortex strength of each segment is
γdlA and γdlB. From the Biot-Savart law, the norm of the velocities induced by each elementary
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segment is:

dVA = γdlA
2πPA = γdβ

2π cosα (A.127)

dVB = γdlB
2πPB = γdβ

2π cosα (A.128)
Since the velocities have opposite directions their contribution is zero and this will apply to all
pairs of segments upon integration over β. This shows that the induced velocities inside the circle
are zero.
By definition of the problem, the vorticity distribution along the ellipse is such that:

γedle = γdlc (A.129)
where the subscript e refer to the ellipse and c to the circle. Without loss of generality it is
assumed that the ellipse is obtained from the circle by the simple transformation displayed in
figure A.11(right) and prime notations are used for the transformed points. A pair of elementary
segments along the ellipse corresponds to a pair of elementary segment on the circle. First, from
equation (A.129), the total vorticity of corresponding segments is the same: γA’dlA’ = γdlA and
γB’dlB’ = γdlB. Second, the length are affected by the same constant c by the transformation, so
that: P’A’ = cPA and P’B’ = cPB. Third, since the vorticity is in the z direction, the induced
velocities by both elementary ellipse segments will have opposite direction. Last, the magnitude of
these velocities are from the Biot-Savart law:

dVA’ = γA’dlA’
2πP’A’ = γdlA

2πcPA = γdβ

2πc cosα (A.130)

dVB’ = γB’dlB’
2πP’B’ = γdlB

2πcPB = γdβ

2πc cosα (A.131)
The norm of the velocities are equal which implies that the vectorial sum is zero and this con-
sequently true for all pair of ellipse segments. It results that the velocity field is zero inside the
ellipse.
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AppendixB
Helical vortex filaments
References The potential correponding to a system of B equally-spaced infinite helical filaments
was derived by Kawada in 1936 [97]. Lerbs [115] introduced an approximate expression in 1952.
Later, in 1957, Wrench [223] added a correction term to reduce the error of the approximation done
by Lerbs. Different relation are also found in the work of Kerwin [98, p. 12] who refer to the work
of Betz and Strcheletsky. The formulae have also been derived more recently by Okulov, as given
for instance in [146].

Note on the stability of Joukowski helical model In the work of Okulov and Sørensen [151]
the stability of helical vortex systems is studied. It is shown that the far wake described by the
helical model of Joukowski is unconditionally unstable for all pitch values.

Conventions The induced velocity of infinite and semi-infinite helices are discussed in this sec-
tion. The canonical helix is regular, it has a pitch h = 2πl, it surrounds the z axis and has the radius
r0. The difference between left-handed and right handed relations will be made by introducing a
sign parameter with value s = −1 for left-handed helix and s = 1 for right-handed helix. From the
symmetry and periodicity of helices a relevant position parameter is χ = θ − sz/l. The induced
velocity for a system of B identical helices equally spaced azimuthally will also be considered.

Semi-infinite helix and rotor terminology In applications to rotors, semi-infinite helices are
used and the induced velocities are evaluated in the “half-plane”, corresponding to the rotor-plane.
Each of the B semi-infinite helix is trailed from a rotor blade. The rotor-blade will be referred
to as the line from which the helix is issued, or “lifting-line”. For a wind turbine rotating in the
clockwise direction, the trailed helix will be left-handed. The helix from the first blade is defined
by the following congruence χ ≡ 0 (mod 2π), and on the lifting line one has simply χ = 0. Results
from Lerbs and Wrench which are expressed at the lifting line (χ = 0) are slightly simpler than the
one presented by Okulov.
From the second result of section D.3.2, the induced velocities at the lifting line are computed as
half the velocities induced by an infinite helix. For distinction, results for infinite helix are written
using a over-tilde notation.

Tangential velocity The tangential induction is directly related to axial induction with the
following formula:

uθ = u0 − suz
l

r
or ũθ = ũ0 − sũz

l

r
(B.1)

Where u0 is the velocity induced by a root vortex line representing the vortex system, i.e.:

ũ0 = BΓt
2πr (for B infinite helices, or in the far wake of semi-infinite helices) (B.2)

u0 = BΓt
4πr (for B semi-infinite helices evaluated at the rotor-plane) (B.3)
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B.1 Exact expressions for infinite helical vortex filaments
One infinite helical filament Exact analytical formulae for the velocity field induced by an
infinite helical vortex filament is found e.g. in Hardin [81](1982) in terms of modified Bessel func-
tions:

for r < r0
for r0 > r

, s ũz(r, χ) = Γt
2πl

{
1
0

}
−Γtr0

πl2

∞∑
n=1

n

{
In
(
nr
l

)
·K ′n

(
nr0
l

)
Kn

(
nr
l

)
· I ′n

(
nr0
l

)} cos(nχ) (B.4)

ũr(r, χ) = Γtr0

πl2

∞∑
n=1

n

{
I ′n
(
nr
l

)
·K ′n

(
nr0
l

)
K ′n
(
nr
l

)
· I ′n

(
nr0
l

)} sin(nχ) (B.5)

ũθ(r, χ) = Γt
2πr −uz

l

r
(B.6)

In the above the upper value of the bracket should be used for radial positions such that r < r0.
The first term corresponds to the first term of the series, i.e. n = 0 while the second term result
from the folding of the negative and positive series index.

B.2 Approximate expressions for infinite helical filaments
The approximate expressions for several filaments can be attributed to the work of Lerbs [115]
and Wrench [223] eventhough the authors presented results at χ = 0 in their references. General
formulae are presented by Okulov for one filament. The link between the two is investigated in
section B.5. The value of the functions C and the different notation used are mare explicit in
section B.4. The induced velocities for one (B = 1) or B helical filaments are given by:

sũz(r, χ) = BΓt
2πl

{
1
0

}
+BΓt

2πl C0z

[
Re [±FB ] + 1

B
C1z,•Re [log (1 + FB)]

]
(B.7)

ũr(r, χ) = −BΓt
2πr C0r

[
Im [ FB ]± 1

B
C1r Im [log(1 + FB)]

]
(B.8)

where
FB = 1

e∓Bξ−iBχ − 1 (B.9)
and where the sign notation ± or ∓ follow the same stacking layout than the brackets notation:
the upper value should be used when r < r0. The expression of Lerbs or Wrench are obtained
depending on the definition of the constant C1z used (see section B.4).

B.3 Expressions for semi-infinite helices evaluated on the
lifting line

The expressions for semi-infinite helical filaments evaluated on the lifting line are directly obtained
from the results of section B.1 and section B.2 by division by 2 and evaluation at χ = 0.

Exact expression for several semi-infinite evaluated on the lifting line The axial velocity
induced by B semi-infinite helical filaments on the lifting line(χ = 0) can be derived from this
potential. It can also be obtained from equation (B.4)-(B.6), by summing the contribution of B
helical filaments and dividing the contribution by two. This leads to:

for r < r0
for r0 > r

, s uz(r) = BΓt
4πl

{
1
0

}
−B

2Γtr0

2πl2
∞∑
n=1

n

{
InB

(
Bnr
l

)
·K ′nB

(
Bnr0
l

)
KnB

(
Bnr
l

)
· I ′nB

(
Bnr0
l

)} (B.10)
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Approximate expression for several semi-infinite evaluated on the lifting line The
expression from Lerbs and Wrench given at the lifting line (χ = 0) are:

s uz(r) = BΓt
4πl

{
1
0

}
+ BΓt

4πl C0z

[
±1

e∓Bξ − 1 + 1
B
C1z log

(
1 + 1

e∓Bξ − 1

)]
(B.11)

(B.12)
The value of the functions C are developed in equation (B.15)-(B.13).

B.4 Notations introduced for approximate formulae
The different notations introduced for the derivation of approximate formulae are given below. The
variable ξ is used in all simplified expressions, it is defined in an exponential form as follows:

eξ = r

r0

(
l +
√
l2 + r2

0

)
(
l +
√
l2 + r2

) exp
(√

l2 + r2/l
)

exp
(√

l2 + r2
0/l
) (B.13)

The attention is drawn on the required factor 1/l in equation (B.13) if comparison is to be done
with other references. From the exponential notation, the following relations holds and will be
convenient to compare expressions in the literature:

e−ξ = 1
eξ
, log

(
1 + 1

e∓ξ − 1

)
= − log

(
1− e±ξ

)
(B.14)

The variables C0z and C0r are used in all approximate relations:

C0z =
(
l2 + r2

0
l2 + r2

) 1
4

, C0r = 1
l

[
(l2 + r2

0)(l2 + r2)
] 1

4 (B.15)

The variables with the index 1 are different between the expression of Lerbs and Wrench:

C1z = l

2
r2
0

(l2 + r2
0) 3

2
(Lerbs) (B.16)

C1z = l

24

[
9r2

0 + 2l2

(l2 + r2
0) 3

2
+ 3r2 − 2l2

(l2 + r2) 3
2

]
(Wrench) (B.17)

C1r = l

24

[
9r2

0 + 2l2

(l2 + r2
0) 3

2
+ −9r2 − 2l2

(l2 + r2) 3
2

]
(B.18)

For comparison between the different expressions in the litterature it is good to note the relations
given by equation (B.19) and (B.14) :

y

y0

(√
1 + y2

0 + 1
)

(√
1 + y2 + 1

) = y0

y

(√
1 + y2 − 1

)
(√

1 + y2
0 − 1

) =


(√

1 + y2 − 1
)(√

1 + y2
0 + 1

)
(√

1 + y2 + 1
)(√

1 + y2
0 − 1

)


1
2

(B.19)

B.5 Summation of several helices - Link between Okulov’s
relation and Wrench’s relation

Within a more general context, Okulov [145] derived approximate expression for the velocity field
induced by one infinite helical filament at any location contrary to the work of Lerbs and Wrench
which are specified on the lifting line only. In this paragraph the consistency between Okulov’s and
Wrench’s relation is briefly shown, the motivation for this is threefold. First, it is not obvious that
the sum over B helices of the approximate velocity field for one helix is equal to the approximation
of the summed velocity field from B helices. Superposition of the Biot-Savart law is obvious, but
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not if approximations are done. Second, some of the elements of demonstration can be useful in
other context where summation over different blades are required (see e.g. [33, p . 212]). Last,
the process of linking Okulov’s and Wrench relation is an interesting exercise that helps revealing
typographical errors that can be found in other references. Okulov’s approximate relation for the
velocity field induced by an infinite vortex filament is:

s uz,Ok(r, χ) = Γt
2πl

{
1
0

}
+ Γt

2πlC0z Re
[
±eiχ

e∓ξ − eiχ
− C1z,Wr log

(
1− e±ξ+iχ

)]
(B.20)

Below are presented the elements of the demonstration that show that Wrench’s expressions can be
obtained by summation of Okulov’s approximate solution for one infinite vortex filament. Each of
the B helical filaments is defined by χk = 2kπ

B . The eχk are roots of unity, and hence are roots of
the polynomial PB(Z) = ZB − 1 =

∏
(Z − eiχk). The first relation required for the demonstration

is the following: ∑
k

eiχk

Z − eiχk
=
∑
k

eiχk
∏
j 6=k(Z − eiχj )
ZB − 1 = B

ZB − 1 (B.21)

To derive the second equality one can for instance notice that the numerator is a polynomial of
degree B − 1 in Z which has the same value on B different points, the eiχk . This value is found to
be B by expressing the derivative of PB on one of the root of unity. It follows that the numerator is
the constant polynomial whose value is B. Another general relation required for the demonstration
is readily obtained from the properties of the roots of unity:∑

k

log
(
1− Zeiχk

)
= log

(∏
k

(
1− Zeiχk

))
= log

(
1− ZB

)
= − log

(
1 + 1

Z−B − 1

)
(B.22)

Using equation (B.21) and (B.22) the consistency between Okulov’s and Wrench’s relation is easily
shown and the typographical errors revealed.
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AppendixC
Kutta-Joukowski theorem applied to a
rotor with straight lifting lines
The current chapter presents the different formulae resulting from the application of the Kutta-
Joukowski theorem to a wind turbine. The chapter mainly presents formulae without justifications.
The actuator-disk case is treated in a separate section first. The case of rotors with finite number
of straight lifting lines is treated next. The vortex actuator disk results are then obtained again as
a limiting case of a rotor with an infinite number of straight lifting lines.

Notations A rotor with B blades is considered with each blade modelled with a straight lifting
line (no coning or sweep). The circulation along each blade is ΓB(r), at the radial position r. eθ is
positive around the axis z and defines the rotation of the turbine with clockwise convention. At a
radial position r, the velocity normal and tangential to the lifting line are written without loss of
generality Un = U0(1− aB) and Ut = Ωr(1 + a′B), where U0 is the free stream velocity, Ω the rotor
rotational speed, a the axial induction and a′ the tangential induction. The subscript B is used to
highlight the difference with the average induction factor. For an axisymmetric actuator disk, no
distinction is to be made between the induction on a blade or the azimuthally averaged induction.
The subscript “KJ” is used for Kutta-Joukowski relations, as opposed to the subscript “MT” and
“BT” that used for momentum theory and Blade element momentum theory.

C.1 Vortex actuator disk
Actuator disk and velocity triangle The loads on the rotor are assumed to act solely on a
disk surface. Axisymmetry of the loads, and conversely of the flow, is assumed. The coordinate
system illustrated in figure 2.1 is adopted.

Kutta-Joukowski analysis (or Blade Element Theory without drag) The Kutta-Joukowski
(KJ) relation and the velocity triangle on the rotor disk provides the local thrust dTKJ(r), torque
dQKJ(r), and power dPKJ(r), which dimensionless coefficients are:

Ct,KJ(r) ≡ dTKJ(r)
1
2ρU

2
0 2πrdr

= k(r)(1 + a′(r)), Cq,KJ(r) ≡ dQKJ(r)
1
2ρU

2
0 r2πrdr

= Γ(r)
πrU0

(1− a(r)) (C.1)

Cp,KJ(r) ≡ λrCq,KJ(r) = k(r)(1− a(r)) (C.2)
where

k(r) = ΩΓ(r)
πU2

0
, λr ≡

Ωr
U0

(C.3)

and Γ(r) is the rotor circulation. In the absence of drag, the coefficients obtained from this KJ-
analysis are identical to the ones that would be obtained using the Blade Element Theory (BET)
as introduced by Drzewiecki [61] (see e.g. [79]). This is further detailed in section C.2.1.
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C.2 Kutta-Joukowski theorem for a rotor made of straight
lifting lines

C.2.1 Kutta-Joukowski and velocity triangle - Local relations

The application of the Kutta-Joukowski theorem leads to:
Urel = Unez − Uteθ (C.4)
ΓB = ΓBer (C.5)
L = ρUrel × ΓB = ρΓB (Uneθ + Utez) (C.6)

‖L‖ = ρΓBUrel (C.7)

Cl = ‖L‖dr
1
2ρU

2
relcdr

= 2ΓB
cUrel

⇒ ΓB = 1
2cUrelCl (C.8)

dTKJ = BρΓBUtdr
(
= 1

2ρ(Bcdr)UrelUtCl = dTBT,L

)
(C.9)

dQKJ = BρΓBUnrdr
(

= 1
2ρ(Bcdr)rUrelUnCl = dQBT,L

)
(C.10)

The expression in parenthesis in the last two equations shows the compatibility between the blade
element theory result without drag and the Kutta-Joukowski formulation. Such compatibility is
expected since a blade element analysis has been made when applying the Kutta-Joukowski relation
on a elementary airfoil of span dr. Eventually, the local coefficients can be found from the above
relation:

Ct,KJ
∧= dTKJ

1
2ρU

2
0 2πrdr

= BΓBUt
πrU2

0
= BΓBλ(1 + a′B)

πRU0
[ - ] (C.11)

Cq,KJ
∧= dQKJ

1
2ρU

2
0 r2πrdr

= BΓBUn
πrU2

0
= BΓB(1− aB)

πrU0
[ - ] (C.12)

Cp,KJ
∧= dPKJ

1
2ρU

3
0 2πrdr

= BΓBΩUn
πU3

0
= BΓBλ(1− aB)

πRU0
[ - ] (C.13)

Conversely the circulation along the blade can be obtained from the coefficients:

ΓB = πRU0

Bλ(1 + a′B)Ct,KJ [ m2/s ] (C.14)

ΓB = πrU0

B(1− aB)Cq,KJ [ m2/s ] (C.15)

ΓB = πRU0

Bλ(1− aB)Cp,KJ [ m2/s ] (C.16)

The ratios between the torque and thrust are:
dQKJ

dTKJ
= rUn

Ut
= (1− aB)R

(1 + a′B)λ and, Cq,KJ

Ct,KJ
= (1− aB)

(1 + a′B)λr
= tanφ (C.17)
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C.2.2 From local to rotor factors

From the local results of section C.2.1, the rotor parameters can be obtained by integration. The
rotor coefficients are:

CT,KJ = 2
R2

ˆ R

0
rCt,KJdr = Bλ

1
2πR

3U0

ˆ R

0
ΓB(1 + a′B)rdr [ - ] (C.18)

CQ,KJ = 2
R3

ˆ R

0
r2Cq,KJdr = B

1
2πR

3U0

ˆ R

0
ΓB(1− aB)rdr [ - ] (C.19)

CP,KJ = 2
R2

ˆ R

0
rCp,KJdr = Bλ

1
2πR

3U0

ˆ R

0
ΓB(1− aB)rdr [ - ] (C.20)

are the corresponding rotor loads:

TKJ = Bρ

ˆ R

0
ΓBΩr(1 + a′B)dr [ N ] (C.21)

QKJ = Bρ

ˆ R

0
ΓBU0(1− aB)rdr [ Nm ] (C.22)

PKJ = BρΩ
ˆ R

0
ΓBU0(1− aB)rdr [ W ] (C.23)

The relations above can also be presented using an integration over λr.

C.2.3 Application for infinite number of blades

Results for an actuator disk are presented in section C.1. There are here obtained as a limiting
case of the case presented in section C.2.1. The limit of infinite number of blades implies:

Γ∞ = lim
B→∞

B ΓB (C.24)

Bc −−−−→
B→∞

2πr (C.25)

aB −−−−→
B→∞

a (C.26)
Combining the two first expressions, it is possible to use finite number of blades analysis in a non
rigorous way to go directly to infinite number of blades by using the following relations:

B = 2π
δθ

(C.27)

ΓB = Γ∞
δθ

2π (C.28)
These equations smear out the discretization over the entire disc.
The definition of lift and Cl becomes unphysical for infinite number of blades, it should be taken
with care.

Cl = ‖L‖dr
1
2ρU

2
relcdr

= 2ΓB
cUrel

⇒ ΓB = 1
2cUrelCl (C.29)

dTKJ = ρBΓBUtdr −−−−→
B→∞

dTKJ,∞ = ρΓ∞Utdr [ N ] (C.30)

dQKJ = ρBΓBUnrdr −−−−→
B→∞

dQKJ,∞ = ρΓ∞Unrdr [ Nm ] (C.31)

dPKJ = ρBΓBUnΩrdr −−−−→
B→∞

dPKJ,∞ = ρΓ∞UnΩrdr [ Nm/s ] (C.32)
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The dimensionless coefficients are then:
CtKJ,∞

∧= dTKJ,∞
1
2ρU

2
0 2πrdr

= Γ∞Ut
πrU2

0
= Γ∞λ(1 + a′B)

πRU0
[ - ] (C.33)

CqKJ,∞
∧= dQKJ,∞

1
2ρU

2
0 r2πrdr

= Γ∞Un
πrU2

0
= Γ∞(1− aB)

πrU0
[ - ] (C.34)

CpKJ,∞
∧= dPKJ,∞

1
2ρU

3
0 2πrdr

= Γ∞ΩUn
πU3

0
= Γ∞λ(1− aB)

πRU0
[ - ] (C.35)

And these expressions can be used to express the circulation as:

Γ∞ = πRU0

λ(1 + a′B)CtKJ,∞ [ m2/s ] (C.36)

Γ∞ = πrU0

(1− aB)CqKJ,∞ [ m2/s ] (C.37)

Γ∞ = πRU0

λ(1− aB)CpKJ,∞ [ m2/s ] (C.38)

The ratios between the torque and thrust are:
dQKJ,∞

dTKJ,∞
= rUn

Ut
= (1− aB)R

(1 + a′B)λ and,
CqKJ,∞

CtKJ,∞
= (1− aB)

(1 + a′B)λr
(C.39)

The same results can be obtained using a discrete number of blades analysis together with the
smearing relations equation (C.27) and (C.28). It is interesting to detail a little, the different way
of seeing the loading though it doesn’t bring additional information to the above analysis. The
total force in an annulus, if concentrated on B blade is

dT = Bkndr (C.40)
where kn is a linear force in [N/m], homogeneous with convention used in this document for the
lift term L. In this case kn is equal to ρΓBUt from the Kutta-Joukowski relation. Which can be
averaged as a pressure term (surface force in [N/m2]) over an annulus as:

pn(r) = dT

2πrdr = B
kn
2πr ⇒ Bkn = 2πrpn (C.41)

pn(r) = 2π
δθ

ρΓBUt
2πr = 2π

δθ

ρΓ∞δθUt
2π · 2πr = ρΓ∞Ut

2πr (C.42)
The local thrust coefficient can be found by dividing this pressure force by the dynamic pressure
1
2ρU

2
0 :

Ct = pn
1
2ρU

2
0

= Γ∞Ut
U2

0πr
(C.43)

C.2.4 BET without drag and Joukowski - Finite and infinite number of
blades

It has been seen in section C.2.1 that the BET without drag and the KJ formulation are compatible
since they are both based on 2D blade element analysis. To go from one formulation to the other
one uses the following relation:

ΓB = 1
2cUrelCl (C.44)

If a meaning can be given to the lift coefficient with an infinite number of blade, then an expression
for the circulation can be found by multiplying the above relation by B and going to the limit:

ΓB = 1
2cUrelCl −−−−→

B→∞
Γ∞ = πrUrelCl (C.45)
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C.2.5 Specific cases with High λ

High λ Assuming high λ, or more precisely a′ << 1, then, U t ≈ Ωr = λrU0 and the Kutta-
Joukowski formulation writes:

dTKJ(r) ≈ BρΓB(r)U0λrdr
(
= 1

2ρ(Bcdr)UrelU0λrCl

)
(C.46)

CtKJ(r) ≈ BλΓB(r)
πRU0

⇒ ΓB(r) ≈ πRU0

λ
CtKJ(r) (C.47)

TKJ ≈ Bρ
ˆ R

0
ΓB(r)Ωrdr (C.48)

For high λ : constant circulation along the blade is equivalent to constant local thrust coefficient
that is CT = Ct. The case of constant circulation will be presented in a separate paragraph below.
For high λ the pitch of the wake helix should for to zero.

High λ - Infinite number of blades

dTKJ,∞(r) ≈ ρΓ∞(r)U0λrdr
(
= 1

2ρ(2πrdr)UrelU0λrCl

)
(C.49)

CtKJ,∞(r) ≈ λΓ∞(r)
πRU0

⇒ Γ∞(r) ≈ πRU0

λ
CtKJ,∞(r) (C.50)

TKJ,∞ ≈ Bρ
ˆ R

0
Γ∞(r)Ωrdr (C.51)

High λ - Constant circulation along the blade

dTKJ(r) ≈ BρΓBU0λrdr
(
= 1

2ρ(Bcdr)UrelU0λrCl

)
(C.52)

CtKJ ≈
BλΓB
πRU0

⇒ ΓB ≈
πRU0

Bλ
CtKJ (C.53)

TKJ ≈ B
1
2ρR

2ΓBΩ (C.54)

CT = Ct (C.55)

High λ - Constant circulation and infinite number of baldes

dTKJ,∞(r) ≈ ρΓ∞U0λrdr
(
= 1

2ρ(2πrdr)UrelU0λrCl

)
(C.56)

CtKJ,∞ ≈
λΓ∞
πRU0

⇒ Γ∞ ≈
πRU0

λ
CtKJ,∞ (C.57)

TKJ,∞ ≈
1
2ρR

2Γ∞Ω (C.58)

CT = Ct (C.59)
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AppendixD
Vortex theory for rotors: Helical wake,
optimal circulation, tip-losses and wake
expansion

The current chapter presents applications of vortex theory to rotors. Vortex theory was in par-
ticular applied at the beginning of the 19th century to study optimal rotors and tip-losses. The
historical developments are presented here and complemented by recent work of the author on
the topic. In particular, the author investigated tip-losses using helical filaments model with and
without expansion and wake roll-up. Part of these results were published in the two following
references: [28], [22]. The current chapter, focuses on the historical development and additional
details and results from the author.

D.1 Introduction

D.1.1 Birth of the tip-loss factor
Tip-losses commonly refers to kinematic and/or dynamic differences between a two-dimensional
and a three dimensional configuration of a lifting device. The main source of these differences for a
wing of finite span or for a rotating device of finite number of blades is the circulation flow driven
by the pressure equalization which arises at the tip of the lifting device. Prandtl used vortex theory
analysis to assess the proportion of these losses for both a wing [162] and a propeller blade [161]
at the beginning of the 20th century. The latter study was introduced as a correction factor to be
applied to Betz’s optimal circulation [16] extending the applicability of Betz’s result from an infinite
to a finite number of blades. Prandtl’s simplified model consider the axi-symmetric wake flow about
a series of semi-infinite rigid lines. Glauert [71] suggested a modification to Prandtl’s tip-loss factor
for a convenient numerical implementation and it is his model which has been retained to this day
in most BEM codes. It is worth mentioning that different variations of tip-loss factors are found
in the literature: in [117, 173] empirical modifications are found, in [34, 79] the term “Prandtl’s
tip-loss factor” is used in Glauert’s sense, and in [133] the result used is a special case (no tangential
induction) of Glauert’s factor. A review of the different expressions of the tip-loss factor is found
in [28, 20].

D.1.2 Tools provided by vortex theory
In collaboration with the German school, Goldstein [72] solved in 1929 the exact potential flow
surrounding an ideal wake screw surface. The computational expense of his solution was removed
thanks to the development of approximate solution of the flow field induced by equidistant infinite
helical vortex filaments as done by Lerbs [115] in 1952 and further refined by Wrench [223] in
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1957. In a similar way, Okulov [145] derived such approximate solution and used it to compute
Goldstein’s factor [150]. Design of propellers and wind turbines can be attempted using these
helical solutions. Two shortcomings of the theoretical work of Betz, Prandtl and Goldstein are that
they were undertaken as far-wake analysis and tacitly for light loading. In 1948, Theodorsen [203]
presented an approach to extend the applicability of Goldstein’s factor to heavy loading, relating
far-wake and rotor parameters and deriving expressions for wake expansion/contraction. A different
way to relate far-wake and near wake parameters was used by Okulov et al. [150] to comply with
momentum theory results. In numerical applications, vortex theory gives rise to the development
of different vortex codes which can described effects such as complex wake distortion contrary to
analytical derivations.

D.1.3 Further studying tip losses

Recently, a free wake lifting-line code (see e.g. [20], [27]) was used to derive tip-loss corrections
accounting for wake expansion, roll-up and distortion, and applicable to a wide range of operation
conditions contrary to Prandtl’s tip-loss factor. The present study will make use of analytical vortex
results to derive a new analytical tip-loss factor and various numerical counterparts and study the
influence of wake expansion on tip-losses.
This study is organized in different sections that build up successively to ultimately enable the com-
putation of tip-loss factors using analytical, semi-analytical and wake models. A large proportion of
the chapter is dedicated to describe the tools and theory used. In a first time, the original definition
of the tip-loss factor is presented together with different modern definitions that were thought and
established within the context of vortex theory but are not restricted to it. Simple vortex filament
analysis are presented since they helped establish the new analytical and numerical tip-loss factors
derived in this study. The new analytical tip-loss factor relies an analytical approximate formulae
which are presented in the third section of this chapter. The different wake models used to compute
the tip-loss factor are described in a fourth section. Theodorsen’s wake expansion being used by
some prescribed wake models, relation between near-wake and far-wake parameters will be required
and it will be the purpose of the fifth section to explain how they can be obtained. Last, analysis
of the different tip-loss factors obtained with the different methods are performed.

D.2 From optimal distribution of circulation to a modern
interpretation of tip-losses

Far wake analyses Far wake theories applies under the assumptions of inviscid and irrotational
flow and they rely on the fact that there is a direct relation between the loading and hence the cir-
culation at the lifting device and the momentum in the wake. All theoretical derivations concerning
tip-losses are based on far wake considerations. The motivations for such analysis is that the flow
is more complicated in the near wake due to the interaction with blades, boundary layers at the
blade and separation effects. These effects dissipates and are thus no more present in the far wake.
Moreover, the chord is left as a secondary consideration. The conceptual plane in the far wake
perpendicular to the upstream velocity is called the Trefftz plane. By using a variational method
on the velocity potential, Munk [144] derived the classical results of elliptical lift distribution which
induces the minimum drag, results obtained earlier by Prandtl using a lifting line approach.
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D.2.1 Far-wake analysis: the distribution of optimal circulation

In 1919, following an analogous far wake analysis to the one of Munk [144], Betz derived the
optimum circulation distribution which minimizes the power losses for a propeller rotor with a very
large number of blades [16]. To this end he calculated the thrust and power in the far wake and
minimized the power for variations of the circulation. This yielded to the condition of the flow
being locally perpendicular to the wake surface. The optimal circulation is obtained for this flow
condition at any radial position by integrating the azimuthal velocity along a path surrounding the
propeller axis. For this optimal condition the flow in the far-wake is the same as if the vortex surface
formed by the trailing vortices was an impermeable rigid helix of constant pitch that translated
downstream with a constant velocity w. In the propeller case, this velocity is oriented in the stream
direction going away from the rotor, whereas for wind turbines, w is pointing towards the rotor.
This analysis was performed under the assumption of lightly-loaded rotor. Betz referred to it as the
“rigid-wake” condition but the flow itself does not follow a rigid rotation nor a rigid translation but
has an axial and an azimuthal component. It should be noted that w is the apparent velocity of
translation of the wake, an elementary wake surface at radius r would move at a velocity w cos ε(r).
The assumption of infinite number of blades deserves a bit of attention regarding the definition of
the circulation. If ΓB(r) designs the circulation around one blade at radius r, then the circulation
for an infinite number of blade is

Γ∞(r) = lim
B→∞
ΓB→0

B · ΓB(r) (D.1)

and the above limit is assumed to be finite. In the general case, the boundary conditions on the
“rigid wake” writes [20]:

uz,w = w
V 2
t

V 2
n + V 2

t

(D.2)

uθ,w = w
VnVt

V 2
n + V 2

t

(D.3)

Integrating the tangential velocity along a circle of radius r gives Betz’s optimum circulation:

Γ∞(r) =
ˆ 2π

0
uθ,wrdθ = 2πruθ,w = 2πwVnΩ

V 2
t

V 2
n + V 2

t

(D.4)

Assuming this results apply for a rotor with B blades then the circulation of each blade is:

ΓBe = Γ∞
B

= 2π
B

wVn
Ω

V 2
t

V 2
n + V 2

t

(D.5)

which writes in dimensionless form:

CΓBe =
(
Vt
Ωr

)
V 2
t

V 2
n + V 2

t

(D.6)

In the special and historical case of Vt = Ωr and Vn = U0, i.e. using the simplified helix angle
tan ε = Vn/Vt = 1/λr, the Betz circulation reduces to:

ΓBe,0 = 2π
B

wU0

Ω
λ2
r

1 + λ2
r

(D.7)

and in dimensionless form:

CΓBe,0 = λ2
r

1 + λ2
r

(D.8)

More details can be found in [20]
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D.2.2 Historical tip-loss factor
As a discussion following the work of Betz [161], Prandtl derived an approximate correction to
account for rotors with finite number of blades. Figure D.1 is used in the following to illustrate
the argumentation of Prandtl. In the case of the “rigid-wake” motion (a), which is the condition
derived by Betz for optimal loading, the air going through the rotor’s swept area stays within the
boundary of the wake helix, there is no radial flow nor expansion of the wake. Outside the wake,
the velocity is equal to the free-stream velocity. Neglecting the rotational component within the
wake, this flow pattern can be approximated by straight vortex lines, infinitely close to each other
in between which the air stays confined. One can assume that for an optimal propeller with finite
number of blades, the wake can be approximated by straight lines further apart(c), in which case
the flow will no longer stay confined between the lines. Prandtl considers that the proportion of
which the flows varies from (c) to (b) is the same as from (d) to (a). Further, this proportion can be
assumed to be a simple multiplicative factor. A detailed derivation and generalization of Prandtl’s
tip-loss factor can be found in [20].

(a) (b)

(c)(d)

Figure D.1: Prandtl’s interpretation of tip-losses. Betz’s optimal rigid-wake for a very large number of
blade(a) and Prandtl’s interpretation for very large (b) and small (c) number of blades. Figure (d) is the
representation of the flow pattern expected for a helical wake with finite number of blades

Prandtl’s correction factor can be used to relate parameters from the optimal condition of Betz to a
case where the number of blades is finite. The loss of loading between infinite number of blades and
finite number of blades is referred as tip-losses and the correction factor called the tip-loss factor is
usually noted F . In the derivation of the factor F , it is assumed that the velocity just outside the
wake is the free-stream velocity (see [20]). This enforces that the factor F goes to zero at the tip of
the wake. By multiplying the optimal circulation from Betz by this factor, the circulation will also
go to zero at the tip. Nevertheless, the physical interpretation of Prandtl’s tip-loss factor should
not be pushed beyond the approximation context in which it was derived. The problem assumes
axisymmetry and that the free stream velocity is reached at the tip of the wake, which is only the
case paradoxically for infinite number of blades or infinite tip-speed ratios.
Prandtl’s tip-loss factor and the many variations found in the litterature as listed in [20] can be
written in the form:

FPr = 2
π

acos exp [−f ] (D.9)
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where f is a factor that would generally tends toward zero at the tip of the blade. Prandtl introduced
this factor to compute the circulation on the blade ΓB as function of the optimal circulation of Betz
Γ∞. In this context, a definition of tip-loss factor could be:

FΓ = ΓB
Γ∞

(D.10)

From this definition, it is then possible to compute Goldstein’s tip-loss factor, by using Goldstein’s
circulation solution as ΓB . A complement on the computation of Goldstein’s factor are found in
section D.8.2 and in [20]. Figure D.2 illustrates the different circulation functions and tip-loss
functions from the work of Betz, Prandtl and Goldstein for different tip-speed ratios.
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Figure D.2: Comparison between Betz, Prandtl and Goldstein theory for a three bladed rotor. (a) Normal-
ized Circulation - (b) Tip-loss factor. The colors represent the different values of tip speed ratio taken: 2,5
and 8. The computation of Goldstein’s factor is done using Okulov’s method. The link used between the
tip-speed ratio and the helical pitch is: h = 2πR/λ.

D.2.3 Modern definitions of the tip-loss factors
Let us assume that the entire flow field is known for a given rotor with B blades at a given
operating condition. Such flow field can be obtained with vortex methods or other computational
fluid dynamics methods. It will be further assumed that the flow field is also known in the case
of a very large number of blades. The configuration with very large number of blades, considered
as an infinite number of blades, does not present any tip-losses since the rotor can be modelled as
an actuator disk. A tip-loss factor can thus be derived as the ratio between the induced velocity
found on a blade for the case of an infinite number of blades, to the equivalent value found for a
finite number of blades. Such ratio can be computed for both the axial and tangential velocities
or similarly for their corresponding induction factors a and a′, leading to the definition of the two
following tip-loss factors:

Fa = a∞
aB

(D.11)

Fa′ = a′∞
a′B

(D.12)

In the above, the ∞-subscript refers to the case of an infinite number of blades. This definition
will be referred to as the natural definition of the tip-loss factor. As used in some BEM codes
implementations, the tip-loss factor can also represent the proportion in which the axial induction
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at the blades differs from the momentum theory value. The momentum value is sometimes seen
as a average value over an annulus. From this perspective another definition of tip-losses can be
established as e.g. in [185]. This tip-loss factor will be referred to as the planar tip-loss factor and
will be defined as the ratio between the average induction in a circular annulus to the one on the
blade, namely:

F〈a〉 = 〈a〉θ
aB

(D.13)

F〈a′〉 = 〈a
′〉θ
a′B

(D.14)

In the above, the brackets refer to the azimuthal average in an annulus defined between the radii r
and r + dr:

〈 • 〉θ = 1
2π

ˆ 2π

0
• rdθ (D.15)

D.3 Vortex representation of the wake

D.3.1 Classical wing theory applied to rotors
In the case of a non-optimal rotor, Betz’s condition of an helical wake of constant pitch does not
hold. A classical results of vortex wing theory in application of Helmotz theorem is that changes
in bound circulation along the blade will result in vorticity being trailed in the wake. Unless the
circulation is constant along the span, a continuous sheet of vorticity is trailed behind the blade.
The strength per unit of length of the trailed vorticity is directly equal to the opposite of the bound
circulation’s gradient which writes:

Γt(r) = −∂Γ(r)
∂r

dr [ m2/s ] (D.16)
As a result of this, the strength of the vortex sheet increases towards the wing extremities where the
circulation gradient is expected to be the highest. These higher intensities of trailed vorticity at the
tip will induce a roll-up of the wake into a concentrated tip-vortex. Prandtl neglected this roll-up to
develop his lifting-line theory where the wing was modelled as a superposition of horseshoe vortices
laying on the wing and expending towards infinity. Extending Prandtl’s lifting line theory from
wings to rotors consists in using horseshoe vortices that are prescribed to follow an helical path.
In the following, both prescribed and free wake analysis will be performed to study tip-losses. The
problem of solving the flow for a given rotor is non-linear since the wake geometry depends on the
induced velocities which are generated by the wake. For free-wake methods this problem is solved
by time-convergence, while in prescribed wake methods a relation has to be found between the flow
at the rotor and the wake geometry and an iterative algorithm should be used. Such relation will
be presented in appropriate sections.

D.3.2 Vortex filament analysis leading to preliminary considerations
By using a vortex filaments analysis of the wake, three important results can be obtained in light
of the study of tip-losses. While the second result is used extensively in vortex theory, the first
and third results are established and used for the first time to the authors’ knowledge. It will be
seen in section B.1 that convenient approximate analytical solutions for infinite helical filaments
exist. Nevertheless, by applying Prandtl’s lifting line theory to rotors the wake would be made
of semi-infinite helices and not infinite helices. The second and third result below help relating
analytical relations for infinite and semi-infinite helices.
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First result: equality between the natural and planar tip-loss factor In the case of an
axi-symmetric wake and by assuming that the wake shape is the same for any number of blades,
the natural tip-loss factor and the planar tip-loss factors are the same. These assumptions are
satisfied in particular in the case of a non-expanding wake consisting in different trailed helices.
This result can easily be proven analytically but is similarly obtained by a simple reasoning. Figure
3.1 illustrates the following. Let us consider the case of one blade with circulation Γ and its
corresponding case of B blades, which by conservation of circulation will each have the circulation
Γ/B. The system of trailed vortices between the two cases will also have a factor 1/B between their
intensities. Now let us consider an elementary trailed vortex filament belonging to the wake of the
single bladed case and the B corresponding elements from the B bladed case which are actually
obtained from the former by B successive rotation of angle 2π/B around the rotor axis. It is easily
seen that the sum of the contribution of the B azimuthal elements with intensity scaled by 1/B
on one control point on the blade is equal to the average contribution from one element with full
intensity on B different azimuthal positions. This demonstration is easily extended to an infinite
number of blades and azimuthal control points by using integrals instead of summations and limits
instead of direct circulation intensity.

Second result: Infinite and semi-infinite helical filaments By considering an infinite helix,
any plane perpendicular to it would slice the helix in two semi-infinite helices. The induced velocities
generated by the two semi-helices are the same on the radial line supporting the helix in the slicing
plane but also symmetric with respect to that line. As a result of this the induced velocities on the
radial line supporting the semi-infinite helix are half the one obtained with an infinite helix.

Third result: Infinite and semi-infinite helical filaments - average value The azimuthal
average of the induced velocities on a plane perpendicular to the helix axis and from which a semi-
infinite helix is emitted is half the value found for an infinite helix. This is found from a similar
analysis as the previous paragraph due to the symmetry of the induced velocities with respect to
the radial line supporting the helix. This result can also be derived more formally by considering
for instance two elementary elements at equal distance to the slicing plane and use the parity of
the induced velocity function in the longitudinal coordinate and its 2π-periodicity without actually
making explicit the induced velocity function.

D.4 Relation between far wake and near wake parameters
Since most vortex theory results are obtained using far-wake analysis, the problem of relating
far-wake parameters to near-wake parameters has to be solved. If such relation is known the com-
putation of the Goldstein’s circulation that corresponds to a given operating condition of a rotor
could be computed. This circulation could then be prescribed to the rotor for further studies.
Historical developments from Prandtl and Goldstein for low-loading and small expansion used the
simple relation l = 1/λ to defined the pitch of the wake screw surface, while the wake displacement
velocity w remains a parameter that is expected to vary with the thrust coefficient. Theodorsen [203]
extended Goldstein’s analysis for high loading and wake expansion. Theodorsen’s system of equa-
tions is recursive and requires iterations to determine the far-wake parameters. By use of charts,
table and rule of thumbs the expenses was circumvented by Theodorsen. The iterative procedure
required to solve Theodorsen’s set of equation will be made explicit in section D.4.2, while the
different approach suggested by Okulov and Sørensen will be presented in section D.4.1. In the
strict sense, both methods only applies for the condition of a rotor with ideal load distribution.
In such case, according to Theodorsen, the far wake can be modelled as helical vortex sheets that
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translates without deformation. Outside of this frame of validity, and in particular for high loading,
the mathematical model of helical sheet becomes inadequate and the far-wake parameters abstruse.
Nevertheless, since far-wake parameters will be solely used in this study to compute Theodorsen’s
far-wake expansion, deviations from the range of validity can be granted within the context of this
study.

D.4.1 Extension of the work of Okulov and Sørensen for non-optimal
condition

In a first article [149], Okulov and Sørensen presented rotor parameters as function of the far wake
helix dimensionless pitch l. Indeed, for a given value of l, Goldstein’s factor is known and they
derived an optimal value for w that leads to the optimal power coefficient. In a following article [150]
the authors assumed the equality between the far wake and near wake pitch of the wake helix, and
from that derived the link between the tip-speed ratio λ, the far-wake dimensionless pitch l and
the dimensionless helix velocity w as follows:

λ = 1
l

(
1− w

2

)
(D.17)

Though the context of applicability is strictly the optimal operational regime, one can use the same
assumption than the authors and derive an iterative procedure to compute the far-wake parameters
corresponding to a given operation condition (λd, CT,d). The procedure is as follow:

1. Guess an initial value for w using for instance the following semi-empirical relation inspired
by 1D momentum theory:

w = 0.6 (1−
√

1− CT,d) (D.18)

2. Compute l using equation (D.17)

3. Compute Goldstein’s factor for the given value of l and number of blades, using for instance
Okulov’s method [149].

4. Compute the two integral I1 and I3. I1 is referred to as the mass coefficient and will also be
further written κ.

I1 = 2
ˆ 1

0
G(x, l, B)xdx = κ (D.19)

I3 = 2
ˆ 1

0
G(x, l, B) x3

l
2 + x2

dx (D.20)

5. Eventually compute the thrust coefficient as:

CT = 2w
(
I1 −

w

2 I3
)

(D.21)

6. Repeat step 2 till convergence between the value CT and the design value CT,d.

At the end of the iterative process the far-wake parameters (w, l) corresponding to the operating
condition (λ,CT ) are known. Examples of the relation between such parameters obtained with this
iterative procedure are found in table D.1.

D.4.2 Iterative application of Theodorsen’s theory
Theodorsen’s results are function of the far wake parameters (l, w) but also of the thrust coef-
ficient in the far wake ct. If these three parameters are known, the complete set of equations
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Table D.1: Far wake parameters obtained using the current iterative procedure

Case CT λ 1/l w
1 0.8 12 17.4 0.62
2 0.8 9 13.4 0.65
3 0.7 9 12.2 0.53
4 0.7 8 11.0 0.54
5 0.7 7 9.7 0.56
6 0.7 6 8.5 0.58
7 0.6 7 9.1 0.45
8 0.3 5 5.6 0.23
9 0.1 3 3.2 0.10

from Theodorsen’s work, including wake expansion can be computed. For his design methodology,
Theodorsen’s uses a rule of thumb to determine the thrust coefficient in the far wake. He further
justifies his approximation by the balancing effect between expansion and drag losses. For further
precision, and since no rule of thumb is mentioned for wind turbines, a doubly-iterative procedure
has been implemented for this study. This procedure differs from Wald’s procedure which uses
a different wake expansion formulation, and, as formulated in [218], does not make explicit the
iterative process required for the rotor and far-wake thrust coefficient to be consistent with the
wake expansion.
The operating condition of the rotating device, (CT , λ) are assumed given. The iterative procedure
to determine the far-wake parameters that corresponds to this operating point is as follow:

1. Guess the far wake radius as infinity using a momentum/mass conservation analysis using
equation (D.36).

2. Compute far wake coefficients

ct,d = CT
R2

R2
w

(D.22)

cp,d = CP
R2

R2
w

(D.23)

3. Find the value of w that gives the proper far-wake thrust or power coefficient through an
optimization process:

(a) Guess an initial value for w either from previous step or from an semi-empirical result
inspired by momentum-theory: w ≈ 0.6(1−

√
1− CT )

(b) Compute the dimensionless torsional parameter:

l = 1
λ

(1− w) R

Rw
(D.24)

(c) For the couple of far wake parameters (l, w) compute the mass coefficient κ and the axial
loss factor εz defined by:

κ = 2
ˆ 1

0
G(x, l, B)dx (D.25)

εz
κ

= 1 + 1
2
l

κ

dκ

dl
(D.26)

εz = εz
κ
κ (D.27)
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Several operational points around the desired value of l can be used to determine the
derivative involved.

(d) The far wake coefficients are obtained through:

ct = 2κw
(

1 + w

(
1
2 + ε

κ

))
(D.28)

cp = 2κw (1 + w)
(

1 + ε

κ
w
)

(D.29)

(e) Go back to step (b) with a new value of w until the far wake coefficients reach the desired
value ct,d or cp,d.

4. The far wake parameters (l, w) being known, compute the expansion of the wake using equa-
tion (D.39) and (D.40).

5. The new value of Rw will now be used in step 2 till there is convergence on the far wake
parameters.

After convergence, other variables from Theodorsen’s work can be computed:

e = 2κw2
(

1
2 + ε

κ
w

)
(D.30)

η =
1 + w

( 1
2 + ε

κ

)
(1 + w)(1 + ε

κw) (D.31)

a0 =
1
2w + ε

κw
2

1 + w
( 1

2 + ε
κ

) (D.32)

Results of application of Theodorsen’s theory are shown in figure D.3 for various number of blades.
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Figure D.3: Theodorsen theory. (a) Mass coefficient computed for different number of blades. (b) Loss
estimate for B = 3

D.5 Analytical and numerical wake models
D.5.1 Introduction
Since in vortex theory and for a symmetric rotor, the velocity field at the rotor plane is entirely
determined by the wake geometry, different wake models will give different tip-loss factors. This
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section will focus on key aspects used by some of the prescribed wake models implemented for this
study. A free wake lifting line code was also used in this study. The reader is referred to [20] and
[28] for a description of this code and a its use to study tip-losses. Also, the aim of this study is
not to derive an advanced prescribed wake model, but simply to assess the influence of different
effects on tip-losses.
The simplest and fastest prescribed wake model implemented make use of the analytical expression
presented in section B.1 and allow the calculation of natural and planar tip-losses in an analytical
form. The wake consists of a series of semi-infinite helices trailed from the blade and whose pitches
are different along the blade. The determination of the helix pitches is studied in section D.5.2.
A numerical analog to this wake model has been implemented for validation but being more com-
putationally expensive, its analytical counterpart will be always preferred. This numerical analog
though can be slightly modified to account for wake expansion. In a very simple fashion, using the
same helix pitches, an expansion factor as function of the downstream location can be applied to
the trailed vortex filament. Different expansion factors are presented in section D.5.3, including
the theoretical one from Theodorsen. The last kind of prescribed wake used, which also require
numerical computation, is the one used by Gaunaa et al. [66] which will not be described in details
here. Gaunaa’s prescribed wake mode includes wake expansion and distortion with varying pitches
along the wake and different convection velocities and rotational velocities of the vortex elements.
This model has been established based on the results from free wake computations.

D.5.2 Pitch of the helix
Some of the prescribed wake models used, including the analytical one, require the prescription of
the pitch of the trailed helix. The velocity triangle at the blade has been used in this study for the
determination of the pitch angle. More complex alternatives are mentioned in section D.4.

Helix pitch based on near wake velocity triangle To understand the path followed by the
trailed vorticity, one can consider a particle passing the blade at a given radial position r. At the
blade the particle has the velocity U0(1 − a) and −Ωra′ in the normal and tangential direction
respectively. Immediately after the rotor, it is usually considered that the tangential induced
velocity is then 2Ωra′. The tangential direction is taken positive in the direction of the rotor’s
rotation. If the tangential induction was zero, then the particle trajectory in the wake would be a
straight line normal to the rotor plane. When a′ is different than zero, the particle will follow an
helix oriented in the negative tangential direction with tangential velocity 2a′Ωr. The pitch of this
helix will be rather important since a′ is considerably smaller than a. Nevertheless, this helix does
not correspond to the helix formed by the trailed vorticity. To form this helix one has to consider
all the particles which have passed the position r of the blade at anterior times. Even though all
these particles are travelling mainly longitudinally, joining these particles together would form an
helix mainly due to the rotation of the blade. This helix is also opposite to the direction of the
blade. Eventually, the direction taken by these joined particles entirely determines the pitch of
the helix. The above discussion is illustrated in figure 3.3, and from this it is immediate that the
components of the trailed vorticity can be decomposed as in [152]:

γz = Γt
2πr (D.33)

γt = Γt
2πr

U0(1− aB)
Ωr(1 + 2a′B) (D.34)

The pitch of the helix is found to be

h = 2πU0(1− a)
Ω(1 + 2a′) (D.35)
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In theory, for the pitch angle to be determined solely by the velocity triangle at the rotor plane, the
rotor should be assumed to operate at low-loading and in the absence of wake expansion. Under
these assumptions the pitch of a trailed filament can be assumed to be constant along the wake
and equation (D.35) can be used. In practice this relation will be assumed for different loading
conditions since it will be used for relative comparisons between the case of expanding and non-
expanding wakes. It is expected that the value of the pitch angle as given in the following paragraph
would give improved results.

Velocity pitch based on far wake convection velocity In [26] (or Chapter 2) the wake helical
pitch is determined by solving for the equilibrium condition of the far-wake convection velocities.

D.5.3 Wake Expansion

Different “ vortex theory” models of wake expansion are presented here.

Simple Momentum theory / vortex cylinder model Using the conservation of mass flux at
the disk and at the wake, i.e. ρUA = ρUwAw, the size of the far wake can be obtained using the
1D momentum theory/vortex cylinder result a = 1

2
(
1−
√

1− CT
)
as:(

Rw
R

)2
= U

Uw
= 1− a

1− 2a = 1
2

[
1√

1− CT
+ 1
]

(D.36)

In the special case of a = 1/3, the two radii are related by Rw =
√

2R.

Cylinder analog expansion Using the velocity induced by a vortex cylinder on the rotor axis
and using the conservation of mass, the radius of the wake can be determined at any downstream
position. From equation (A.69), the velocity on the cylinder axis is:

uz(r = 0) = γt
2

(
1 + z√

R2 + z2

)
(D.37)

where by definition γt = 2a. Assuming the velocity is uniform throughout the wake and using the
conservation of mass, the following expansion of the wake is obtained:(

Rw(z)
R

)2
= 1− a

1− a
(

1 + z√
1+z2

) (D.38)

Where a may be replaced by the 1D momentum theory/vortex cylinder result a = 1
2 (1−

√
1− CT ).

This cylindrical model converges towards the one from equation (D.36) when z →∞.

Theodorsen’s wake expansion Using the Biot-Savart law, Theodoren derives the elementary
radial velocity induced by a vortex segment at another point downstream, with a different radius.
By integration of this expression over the entire wake he obtains the radial velocity at a given point.
The helical relation U0dt = ldθ leads to another form of the radial velocity. Equating the two forms
allows the integration of dr with respect to θ which Theodorsen used to find the wake expansion
at any location downstream. Below, a sign convention parameter is used with s = −1 for wind
turbines and s = 1 for propellers. Theodorsen’s expansion formula is:

Rw(z)
R

= 1− sct
κ

l
3

4

ˆ z/l

X

ˆ ∞
θ

ˆ 1

0

G(x, l, B)
B

B∑
b=1

y1(θ, x, 2πb/B)dxdθdθ (D.39)
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with X = 0 for wind turbines and X =∞ for propellers and the function y1 being defined as:

y1(x, θ, τ) =

(
1− 2x2 + l

2
θ2 + x cos (τ + θ)

)
(

1 + x2 + l
2
θ2 − 2x cos (τ + θ)

) 5
2

[θ cos (τ + θ)− sin (τ + θ)] (D.40)

The above equations are entirely determined by the knowledge of the dimensionless torsional pa-
rameter l = h/2πR and the thrust coefficient in the far wake ct. The Goldstein factor is defined as
G = BΓ/hw and the double of it’s first moment is referred to as the mass coefficient κ:

κ = 2
ˆ 1

0
G(x, l, B)x dx (D.41)

The determination of the far-wake parameters as function of the near-wake (λ,CT ) is described in
section D.4. Illustration of different expansions obtained using Theodorsen’s theory are plotted in
figure 3.2. The curves for the different operating conditions follow a similar trend. Nevertheless,
if plotted against each other small differences between the shapes can be found. In the range of
operation of propellers even more differences in the wake shape would be seen [203, p. 81].

Comparison of wake expansions The two expansion models above are compared with the
model used by the Prescribed wake model of Gaunaa [66]. For this latter model, the tip-vortex
location is determined within a plane supporting the rotor axis by taking the maximum radial
position of the vortex elements in the different intervals found. The comparison for different ro-
tor configurations are plotted on figure D.4. The semi-empirical model from Gaunaa has been
established using canonical free-wake simulations.

It should be noted that the expansion models presented here are near-wake expansion models, and
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Figure D.4: Comparison of wake expansion. Left: theoretical expansion models compared with semi-
empirical prescribed wake from Gaunaa for CT = {0.35, 0.65, 0.8} (from top to bottom). Right: Comparison
of analytical models for CT = 0.8.

thus differ from the one found in the literature like the one from Frandsen [65], Rathmann [165] or
the kxm-model [118] which try to account for wake meandering diffusion and mixing (shown in the
right of figure D.4).
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D.6 Analysis of tip-loss using vortex methods and vortex
theory

D.6.1 Tools and Methodology
The tools available for this study as described in section D.5 consist in different numerical prescribed
wake code, an analytical prescribed wake formulation, and a free wake code. With each of these
methods the natural and planar tip-loss factor as defined in section D.1 can be computed. If no
analytical expression is available, the case with “very large” number of blades is computed with 60
times more blades than the finite number of blade case. The equivalence between planar and natural
tip-loss factors within the validity range from the first result of section D.3.2 has been verified as
a validation case. For the analytical method, the natural tip-loss factor has a direct analytical
expression which makes this method really convenient for computation of tip-losses without wake
expansion. For numerical methods it is the opposite, the planar tip-loss factor is the fastest to be
retrieved since the case with very-large number of blades is obviously expensive. Given the context
of this study, the equivalence between the tip-loss factors is always satisfied and the definition giving
the fastest computational time will be chosen accordingly.

New analytical tip-loss factor The formula of the new analytical tip-loss factor derived in
this study is made explicit below. This tip-loss factor can be computed more easily using the
natural definition but the planar definition could be used as well thanks to the third result from
section D.3.2. At a given radial position, the tip-loss is the ratio between the total induced velocity
from the helical vortex filaments of the infinitely bladed case to the induced velocity of the finite
case:

F (r) = Fa(r) =
lim

Bl→∞

´ R
0 uz,Bl (r, r0, h(r0),Γ(r0)/Bl) dr0

´ R
0 uz,B (r, r0, h(r0),Γ(r0)) dr0

=
´ R

0 Γ(r0)/2h(r0)dr0´ R
0 uz,B (r, r0, h(r0),Γ(r0)) dr0

(D.42)
where uz,B is the sum of induced velocities from B helical filament emitted at radial position r
whose expression is given in equation (B.7). For each radial position, the proper circulation Γt and
helical pitch h = 2πl as defined by equation (D.35) should be used. In practice the flow angle is
known at finite positions and the integral is replaced by a summation. In the above, the limit was
replaced based on the following result:

uz,∞ = lim
Bl→∞

uz,Bl = Γt
2h

{
1
0

}
(D.43)

using the same brackets convention as in section B.1.

Tip-losses outside BEM code For a given prescribed circulation a BEM code with prescribed
circulation can be used to find values required to determine the pitch of the helices or setup Gaunaa’s
prescribed wake. The wake being set-up, the computation of the tip-loss factors are straightforward
and the comparison between the results from the different model can be performed. Of main interest
will be the effect of wake expansion by comparison between the two simple prescribed wake models
using helices of constant pitch all along the wake.

Tip-losses within BEM code The simple prescribed wake models are not expected to perform
as good as predictive tools for wind turbines at hight thrust coefficients. This drop of performance
is mainly found in the amplitude of axial induction. Overall though, the local and global thrust
and power coefficient are within satisfying range compared to usual BEM codes. Despite this
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difference in amplitude, it was envisaged that the tip-loss factor, which is a ratio between axial
inductions values, could be computed with enough accuracy by these prescribed wake models. As
a result of this, each of the wake models implemented can be used within a BEM code to compute
the tip-loss factor at each BEM iteration step. The computational expense of BEM is of course
increased for the numerical wake methods, but barely noticeable when using the analytical wake
model. Indeed in the later case, the definition of the natural tip-loss factor is purely analytical. To
circumvent the computational expense of the numerical vortex codes computation within the BEM
code, database-like solution can be implemented. This was done by the author in earlier work with
free-wake codes [27, 28].

Quantification - Study cases In order to compare the different methods, two different cir-
culation shapes will be prescribed to the various codes for different operating conditions. The
two circulation curves are plotted in figure D.5. The first one corresponds to a case of higher
loading towards the root of the blade. The curve is obtained with the following parameters
{x0 = 0.3, x2 = 0.5, y3 = 0.5, t0 = 0.3}, corresponding to the coordinates of the Bézier points
according to the parametrization developed in earlier work by the authors [27, 28]. The second
circulation shape corresponds to the Goldstein circulation obtained for {CT = 0.6, λ = 7}, which
according to the methodology from section D.4 and its applied results from table D.1 corresponds to
the far-wake values {1/l = 9.1, w = 0.45}. The two curve has been chosen for there difference and
hence the expectation of different resulting tip-loss functions. Figure D.5 presents curves normalized
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Figure D.5: Circulation shapes used for the study of tip-loss.

by their maxima. Simulations were run for the six sets of values {λ,CT } found in table D.2. For
each set, the amplitude of the circulation shape that gives the design thrust coefficient is computed
using a BEM code embedded in an optimization routine. The circulation with the right amplitude
is then prescribed to the different codes.

Quantification - Measures To quantify the differences between the different tip-loss factors
found by the different methods two measures are defined: the lost area AF and the radius of 50%
quantile related to the lost area r50. The lost area is simply the difference between the area of the
unit-square and the area below the tip-loss curve, when expressed in terms of dimensionless radius
and without accounting for hub losses. A large loss area signifies large tip-losses and hence a large
difference between finite and infinite number of blades. The value r50 corresponds to the radial
value for which the lost area reaches 50% of its total value. It hence gives information on the shape
of the curve. A high value of r50 signifies that the tip-loss factor drops abruptly at the tip.
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It is expected that the proximity between the vortex sheets behind the rotor will have a large
influence on the tip-losses. The closer the vortex sheets the closer to the infinite number blade
configuration. It should be recalled that the main parameters in Prandtl’s original definition of the
tip-loss factor is the distance between the vortex sheets. A simple measure of the proximity of the
sheets as function of the operational parameters (λ,CT ) can be defined using simple momentum
analysis. The measure suggested is the distance between two successive vortex sheet assessed using
the tip velocity triangle just behind the rotor, and by consideration of high tip speed ratio (a′ = 0)
and 1D momentum theory:

hB
∧= h

BR
= 2π tanφ

B
= 2π
Bλ

(1− a) = π

Bλ

√
1− CT (D.44)

The different values of hB corresponding to the set of parameters used in this study are reported in
table D.2. In most applications, the lost area will be an increasing function of hB . Nevertheless, it
has been observed in this study that this sole parameter is not sufficient since it is only representative
of the tip of the blade (similar to Prandtl’s original theory). For this reason no bijection is to be
expected between hB and AF in the general case, but for a constant parameter λ or CT a near-linear
relation is observed.

D.6.2 Results
The comparison of the two theoretical tip-loss factors are shown in figure D.6. The different codes
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Figure D.6: Comparison of theoretical tip-loss factors. (left) Circulation 1 - (right) Circulation 2

have been run outside of a BEM code for the two circulation curves and six sets of rotor parameters
presented in section D.6.1. For each case, the tip-loss factor has been computed together with
the lost area parameter and reported in table D.2. For simplicity only four codes are used for
comparison. The line entitled “BEM” refers to the tip-loss factor obtained in Glauert sense within
a BEM code with prescribed circulation. The line entitled “Helix” corresponds to results from
the simple analytical prescribed helical wake model. The line “Helix+Exp.” stands for the simple
prescribed wake model that uses Theodorsen’s theory to compute the wake expansion. Last, the
line “Free Wake” designs the tip-loss results obtained by the free wake lifting line vortex code.
From table D.2 several trends can be outlined. The most general ones being that all methods
show the expected result that tip-losses are reduced with increasing tip-speed ratio and increasing
CT . This is observed with decreasing values of AF for increasing values of λ or CT . This trend
can be explained by the increased proximity of the vortex sheets occurring with the increase of
these parameters as seen by the measure hB . Comparisons between BEM code and free-wake
code results follow the conclusions from a previous study [20]: the tip-loss factors obtained with
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Table D.2: Lost Area AF in percentage of the unit-square area computed for the six sets of operational
parameters and the two circulation shapes.

Circulation 1 Circulation 2
λ 7.0 7.0 7.0 3.0 7.0 12.0 7.0 7.0 7.0 3.0 7.0 12.0
CT 0.2 0.5 0.7 0.6 0.6 0.6 0.2 0.5 0.7 0.6 0.6 0.6
hB 0.13 0.10 0.08 0.20 0.09 0.06 0.13 0.10 0.08 0.20 0.09 0.06
BEM 6.2 5.8 5.5 11.1 5.6 3.5 6.1 5.4 4.8 10.2 5.1 3.1
Helix 5.9 6.0 6.2 9.7 6.1 4.3 7.3 6.7 6.2 11.2 6.4 4.3
Helix+TH. Exp. 5.3 4.3 3.8 6.0 4.0 2.8 6.9 5.6 4.8 9.5 5.2 3.4
Free Wake 3.6 3.1 2.6 7.1 2.8 1.7 5.4 4.5 3.8 8.2 4.2 2.4

Table D.3: 50 % radial quantile of the lost Area, r50 computed for the six sets of operational parameters and
the two circulation shapes. Values closer to one corresponds to tip-loss factors that drops more abruptly
towards the tip.

Circulation 1 Circulation 2
λ 7.0 7.0 7.0 3.0 7.0 12.0 7.0 7.0 7.0 3.0 7.0 12.0
CT 0.2 0.5 0.7 0.6 0.6 0.6 0.2 0.5 0.7 0.6 0.6 0.6
BEM 94.4 94.9 95.2 90.6 95.0 96.9 94.5 95.2 95.8 90.9 95.5 97.3
Helix 95.6 95.5 95.3 92.9 95.4 96.8 94.6 95.1 95.4 92.1 95.2 96.8
Helix+Th. Exp 95.9 96.3 96.5 95.3 96.5 97.3 94.6 95.1 95.4 92.4 95.2 96.7
Free Wake 96.6 96.7 96.7 93.4 96.8 97.8 94.7 95.3 95.6 92.8 95.5 96.7

Glauert’s formulation often have a larger lost area and a lower r50 than the one obtained by the
free-wake code. Yet, since the nature of the two codes are quite different, it is difficult to assess
the reasons for these differences and the comparison can be quite abstruse. On the contrary, the
comparison between the different vortex codes is justified and offers great potential. By looking
at the three last lines of table D.2, it is observed that the lost area is always reduced when going
from the simplest model to the more advanced free-wake model suggesting that both expansion and
distortion of the wake tend to decrease the proportion of tip-losses. The sole effect of expansion
on the tip-loss function is illustrated in figure 3.4b. In both cases illustrated the prescribed wake
models with expansion show a lower lost area. Gaunaa’s advanced prescribed wake models showed
similar tip-loss functions as the simpler helical wake model with Theodorsen’s wake expansion,
showing coherence between the expansion models and suggesting that the expansion model is more
influential than the distortion part of the model for the study of tip-losses. As mentioned earlier,
the comparison between vortex methods and BEM tip-loss factor is not straightforward from their
inherent differences in implementations. In the two plots from figure D.7a the influence of the
circulation shape is illustrated. While there is a clear difference between free-wake results and
BEM results for the first circulation shape, this difference is almost absent for the second circulation
shape. Amongst vortex methods results though, the trends mentioned in the previous paragraph
are visible in both cases. From the spread of results and the variation of the relative position of
Glauert’s tip-loss factor with different circulation functions, it is not obvious to assess whether the
theoretical helix tip-loss factor derived in this study provides a better estimation of tip-losses.

D.6.3 Discussion
The results from the previous sections were obtained for six different set of values for the parameters
(λ,CT ) and two different circulation shapes. These parameters have been selected to provide a
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Figure D.7: Influence of the circulation shape and wake models on the tip-loss factor. (a) - Circulation 1 -
(b) Circulation 2. Both simulation were run for CT = 0.2 and λ = 7

representative set of wind turbine operation conditions. General trends could be extracted from
this characteristics sets of simulation, nevertheless a more comprehensive study could support these
conclusions. The comparisons between the different results from vortex methods are natural and
justified, but it has been seen that the comparison between tip-loss factors from BEM and from
vortex codes was not straightforward. From one circulation shape to the other no trends could be
seen by comparing the tip-loss factor shape from the BEM code and from the vortex codes. But
from the difference in formulation there is no obvious reason for a trend to actually be present.
Since there is to this day no trustful reference for the assessment of tip-losses other than the tools
presented in this study, the choice of one method against another is not possible. As a result of
this, it can not be concluded if the new analytical tip-loss factor presented in this study is to be
prevailed over Glauert’s tip-loss factor.
The new analytical method presented in this article uses a helical wake made of different pitch
angles, different circulation intensities and exact computation of induced velocities at the rotor to
obtain the tip-loss factor. This is in contrast with Prandtl’s tip-loss factor which was obtained for
a non-helical wake and solely based on the distance between two vortex sheets. For this reason,
the physical representation of the method presented in this study should be more advanced. In
the absence of reference for validation no method can be said to prevail the other to this day. The
new analytical formula for the tip-loss factor is only slightly more computational expensive than
the original one so that BEM codes could be used similarly with this implementation.
When no analytical formula exists, vortex methods had to be used to study for instance the effect of
wake expansion, effect not accounted for by the analytical tip-loss factors discussed in the previous
paragraph. Numerical vortex methods methods always present two major shortcomings: their high
computational time and the presence of singularity often dealt with by mollification of the vortex
elements. When the prescribed wake methods are used within the BEM code implemented for
this study, the BEM computational time is drastically increased since a call to the vortex routine
is done at each iteration step from the BEM to compute a new tip-loss factor. The benefit of
using such a upgraded BEM code compared to using directly a free-wake vortex code is then
questionable. The second shortcoming is such methods is the presence of singularities. When
studying tip-losses the knowledge of velocities close to the high-intensity tip-vortex is required.
Such evaluation of velocity could depend on the choice of mollification. Nevertheless, a previous
sensitivity analysis [27] revealed no clear impact on the computed tip-loss factor when several
vortex core models were used. A dependence can be seen at the very tip (above 0.98% radius) and
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if mollification parameters take non physical values.
Within this study a simple method to asses the influence of wake expansion on the tip-loss factor
was implemented. Results from two similar prescribed wake were compared. For a given wake
without expansion, a wake with expansion was built by multiplication of all the elements located
at a given position downstream by the same factor. For a free wake configuration, the expansion
would most certainly occur differently and have a different rate at different radial position. Despite
simplicity of the model it was possible to capture the fact that expansion reduces tip-loss, results
confirmed as well by free-wake simulations.

D.7 Conclusions
Distinctions and clarifications between different possible definitions of tip-losses have been presented
in this article. By superposition of semi-infinite helical filaments whose pitch depends on the velocity
triangle after the rotor, a tip-loss factor can be computed using analytical formulae. This method is
physically more advanced than the one originally presented by Prandtl but in absence of a reference
to compare the performance of the two, no method can be said to outperform the other. The
expansion factor from Theodorsen has been successfully applied to wind energy for the first time
and compared well with other models. Thanks to vortex methods the influence of wake expansion
on the tip-loss factor has been studied. Despite the simplicity of the prescribed wake model it was
possible to capture the fact that wake expansion reduces tip-loss and to confirm this result with
free-wake simulations. Advanced development of numerical methods and accurate measurements
of flow in the rotor plane will help reveal which of the methods assess best the phenomenon of
tip-losses.

D.8 Complements
D.8.1 Optimal CP and CT
The validation of the tools used in the iterative procedure described in section D.4.1 is done first by
using a non-iterative procedure. Following the approach of Okulov and Sørensen, the Optimal CP
and CT are obtained using Goldstein’s circulation function in combination with the near-wake/far-
wake relation: l = 1

λ (1 + w/2). Results obtained are given in table D.4 and illustrated in figure D.8.
The results are consistent with the ones given in [150].

D.8.2 Goldstein circulation and tip-loss factor
Goldstein Advised by Betz, Goldstein [72] derived the optimal circulation of a propeller under
the same assumptions as Betz but for the case of finite number of blades. He assumed that Betz’s
result was still holding, namely that the optimal circulation distribution for a given thrust had a
far-wake flow similar to the one of a rigid screw moving axially with a constant velocity. Goldstein
took advantage of the periodicity of the flow between two screw surfaces to solve Poisson’s equation
which reduces to solving both the homogeneous and the inhomogeneous modified Bessel differential
equations. Goldstein’s made use of infinite series to solve these equations with the proper boundary
conditions. Once the potential is known he determines the circulation at a given radial position,
for a given tip-speed ratio by the jump of potential across the sheet at this radial position in the
far wake. The velocity at any point of the far wake is obtained by differentiation of the potential
(V = gradφ). With the no-wake-expansion assumption, the velocities at the rotor are found to be
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Table D.4: Optimal CP and CT obtained using Goldstein’s circulation function, in combination with the
near-wake/far-wake relation : l = 1

λ
(1 + w/2).

λ CT CP 1/l w l

1 0.37 0.22 1.7 0.83 0.575
2 0.57 0.36 3.2 0.74 0.312
3 0.67 0.43 4.7 0.71 0.214
4 0.72 0.47 6.1 0.70 0.163
5 0.76 0.50 7.6 0.69 0.131
6 0.78 0.51 9.1 0.68 0.110
7 0.80 0.53 10.6 0.68 0.094
8 0.81 0.53 12.1 0.68 0.083
9 0.82 0.54 13.6 0.68 0.074
10 0.83 0.55 15.1 0.67 0.066
11 0.83 0.55 16.6 0.67 0.060
12 0.84 0.56 18.1 0.67 0.055
13 0.84 0.56 19.6 0.67 0.051
14 0.84 0.56 21.1 0.67 0.047
15 0.85 0.56 22.6 0.67 0.044
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Figure D.8: Optimal thrust (left) and power coefficient (right) as obtained using the same procedure as
Okulov et al. [150].

twice as much as the velocity in the far-wake and the flow-angle can be derived. The calculation
of the thrust and torque follow with and without the presence of profile drag using the Kutta-
Joukowski theorem. A guide to follow Goldstein’s article can be found in [20].
From Goldstein’s optimal circulation, a tip-loss factor can be derived by dividing this circulation
by the optimal circulation of Betz. The corresponding tip-loss factor is of the following form:

FGo =
(

λ2
r

1 + λ2
r

)−1 [ 8
π2

∞∑
m=0

T1,ν (νλr)
(2m+ 1)2 + 2

π

∞∑
m=0

am
Iν (νλr)
Iν (νλ)

]
(D.45)

The work of Theodorsen In 1944, Theodorsen [202] presented a methodology for propeller
design using Goldstein’s factor. In his work though, he uses Vn = U0 + w for a generalization of
Goldstein’s theory, to remove the assumption of lightly-loaded rotor. Theodorsen uses the following
notation for his derived “Goldstein” tip loss factor:

G(r) = Γ(r)
hw

(D.46)
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By doing so, wake expansion [149] and highly loaded rotor can be studied using Goldstein’s function.
The question remains on finding the link between the screw pitch angle and the tip-speed ratio.

Computation of Goldstein’s factor The computation of FGo requires care but is not insu-
perable. Historical computation and tabulations include the work of Kramer in 1939 [104], Tibery
and Wrench in 1964 [204]. Nevertheless, it has been observed that due do the slow convergence
of the series, the computational time is quite important even for modern computers. In 1944,
Theodorsen used the analogy with electromagnetism and used an experimental setup with different
manufactured helical surfaces to measure Goldstein’s factor.
Recently, the computation of this factor was carried out by modelling the wake-screw as the su-
perposition of multiple single helical vortex filaments [149]. This method is fast, it presents no
numerical issue and shows perfect agreement with tables from Tibery and Wrench [204]. A detailed
description can be found in the appendix of [20].

D.8.3 Summary of vortex theories - Far wake and near wake parameters
An attempt to summarize the different definitions and assumptions used in the literature as regard
to the vortex theory of the rotor wake is presented in table D.5. The table is unfortunately not
expected to be readable in the paper version of this document, but it should be the case using the
numerical version. The author apologize if any theory was erroneously reproduced in this table.
The following variables are used in the table:

I1 = 2
ˆ 1

0
G(x, l, B)xdx = κ (D.47)

I1W (rh) = 2
ˆ 1

0
G(x, l, B) x

l
2 + x2

x2

x2 + r2
h

1−r2
h

dx (D.48)

I3 = 2
ˆ 1

0
G(x, l, B) x3

l
2 + x2

dx (D.49)

The function rw(r, z) provides the radial position of the vortex filament at a downstream location
z which was trailed at the radial position r at the rotor. The function rw(r, z) provides the dimen-
sionless radial position of the vortex filament at a downstream location z = z/R which was trailed
at the radial position r/R at the rotor. The radial coordinate is made dimensionless with respect
to the wake maximum radius at this location in harmony with Wald’s work. Since such scaling
can be a source of error, dimension quantities when dealing with radii should be preferred. If the
second argument is dropped in the above function, the value refers to the far-wake value.

D.8.4 Other applications of vortex theory in the literature
The following section briefly refers to other applications in the literature without providing detailed
information.

Actuator disk

- Momentum theory and vortex theory: from Sharpe 2004 [184], Wald 2006 [218], Conway 1995
and 1998 [51, 47]

- Conway 2003 [49](non axial, non axisymmetric)
- Work of Conway and Schaffarczyk, application to WT [48], [177, 178]
- Work of Sørensen and Van Kuik [193]
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Table D.5: Summary of the different vortex theories of the rotor wake. For PDF view only.

Definition General Goldstein [72] Okulov and Sørensen [150] With Expansion Wald/Th.[218]
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- Discussion on the generation of vorticity: by van Kuik [213] Lewis [116, p. 214] (generation
of vorticity in axi-symmetric flows)

- Sørensen chapter 2012 [192] Work of Joukowski detailed and revised by Okulov et al. 2015 [146]

Other topics

- Wake stability: Okulov et al. 2004 [148], Sørensen et al. 2011 [194]
- 3D decambering: “Weissinger lifting surface theory N.H. Van Dorn and J. De Young, J.,
A Comparison of Three Theoretical Methods of Calculating Span Load Distribution on
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Swept Wings,NACA TN 1476, 1947”, Ludweig and Ginzel theory [98], Mukherjee 2003 [142],
Sørensen et al. 2014 [195]

- Application of vortex cylinder theory: Lewis [116, p. 170] uses two semi-infinite cylinders
and panels to model a contraction, and also a contraction towards an annulus p.174 using an
additional semi cylinder.

- Application of helical filaments: Lewis [116, p. 204 and p. 209] with discussion on helix angle
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AppendixE
Right cylindrical vortex model applied to
wind energy - Complements

The current chapter provides complements to Chapter 2. Some of its content were published in [23]
and [26]. Further applications of vortex cylinder model for wind energy are found in [23] , [24]
, [29] and [26]. Only the content related to the wake rotation are discussed here.

E.1 Introduction notes
Pressure drop due to wake rotation - introduction The pressure drop due to wake rotation
can be obtained using the r-component of Euler’s equation [123, 126], which, when the radial
velocity component is neglected, writes ∂p

∂r = ρ
u2
ψ

r . The pressure in the wake, just behind the rotor,
can be obtained by integration with uψ = −2Ωra′ as: p(R) − p(r) =

´ R
r
ρ
u2
ψ

r dr. In front of the
rotor, the flow rotation is zero, so that the reference pressure due to rotation there is written p0,
with p0 = 0, which is also the case at the disk rim, p(R) = p0. The fluid will exert on an elementary
disk area dA a force dTrot = (p0− p(r))dA, positive along z. The local thrust coefficient associated
to this force is:

Ct,rot ≡
dTrot

1
2ρU

2
0 dA

= 2
ˆ R

r

u2
ψ

U2
0

dr

r
(E.1)

E.2 Elementary cylindrical system
The elementary cylindrical system presented in Chapter 1 and Chapter 2 is considered.

System closure The pitch h of the helical wake corresponds to the longitudinal distance travelled
by the wake vorticity in one helix rotation. Writing ∆t the time spent during one helix rotation, Vz
and Vψ the axial and tangential convection velocity of the cylindrical vortex sheet, one obtains the
distance run by the wake vorticity as h = ∆t · Vz and 2πR = ∆t(ΩR− Vψ). The same assumptions
than Øye [152] are used to assess the convection velocity. The cylindrical vortex sheet is assumed
to convect at a speed equal to the mean between the two far wake velocities surrounding the sheet:

Vz = 1
2 (U0 + U0 + γt) = U0 + γt

2 , Vψ = 1
2

(
0 + −Γtot

2πR

)
= − Γtot

4πR, (E.2)

The helical wake pitch is then:

h = ∆t · Vz = 2π
Ω(1 + a′c)

(
U0 + γt

2

)
, where a′c ≡

Γtot

4πΩR2 . (E.3)

Inserting the above expression of the pitch h into γt = −Γtot/h leads to:

C = 4−γt2

[
1−

(
−γt2

)]
, with: C ≡ k(1 + a′c), k ≡ ΩΓtot

πU2
0

and γt ≡ γt/U0 (E.4)

181



APPENDIX E. RIGHT CYLINDRICAL VORTEX MODEL APPLIED TO WIND ENERGY - COMPLEMENTS

A consistent vortex model is obtained by solving equation (E.4) for γt or h. This leads to:

γt = U0

[
−1 +

√
1− C

]
, h = πR

λ

[
1 +
√

1− C
]
, Vz = U0

2

[
1 +
√

1− C
]

(E.5)
where λ = ΩR/U0 and C ∈ [0, 1]. The form of the solutions presented in this section are consistent
with the ones presented in a previous work [23] for infinite tip-speed ratio (i.e. a′c = 0 and thus
C = k). The constrain C ∈ [0; 1] associated with equation (E.5) will be lifted in section 2.2.

Rotor variables Using equation (A.70) and equation (E.5), the axial and tangential inductions
are:

a(r) ≡ −uz(r, 0)
U0

= −γt2U0
= 1

2

(
1−
√

1− C
)
, a′(r) ≡ −uψ(r, 0)

Ωr = Γtot

4πΩr2 (E.6)

It is seen that the assumption of uniform circulation implies a constant axial induction on the rotor
plane with this model. From the definition of equation (E.3) it is observed that the tangential
convection induction a′c is related to the tangential induction at the rim of the disk: a′c = a′(R).
The left hand side of equation (E.6) can be rewritten C = 4a(1 − a) = k(1 + a′c) which gives an
expression for the dimensionless circulation: k = 4a(1− a)/(1 + a′(R)). Inserting the expression of
k and a′(r) into the general expressions of the KJ coefficients introduced in section C.1 gives:

Cp,KJ = k[1− a] = 4a[1− a]2 1
1 + a′(R) (E.7)

Ct,KJ(r) = k [1 + a′(r)] = 4a[1− a] 1 + a′(r)
1 + a′(R) = k +

(
k

2

)2 1
λ2
r

= 4a[1− a] +
(
k

2

)2 [ 1
λ2
r

− 1
λ2

]
(E.8)

The above equations were derived by Øye [126]. It is seen that the constant C is equal to the local
thrust coefficient at the rim of the disk: C = Ct,KJ(R). For the current flow situation, with a
and a′ given by equation (E.6), a Stream-tube analysis as presented in [26], would give a constant
thrust coefficient Ct,ST = 4a[1 − a] = C = Ct,KJ(R). On the contrary, the local thrust coefficient
obtained in equation (E.8) is not constant but is increasing towards the root. It is pointed out
that the case of constant rotor circulation leads to a singularity at r = 0 for the thrust coefficient
and the tangential induction. Sørensen and Van Kuik [193] removed the singularity by inserting
a smooth Rankine vortex at the root. In the current study, the singularity will be removed when
using a superposition of cylinders by assuming that the circulation drops to zero at the root. The
singularity vanishes when the tip-speed ratio tends to infinity. The power coefficient obtained with
ST analysis is Cp,ST = 4λ2

ra
′(r) [1 − a] = k[1 − a], which is identical to the value found using the

KJ analysis. The orthogonality of the induced velocity with the relative velocity (equation (2.1))
is only satisfied at the rim of the disk in the vortex model:

4a[1− a]
λ2
r

= k[1 + a′c]
λ2
r

= 4a′(r)[1 + a′c] 6= 4a′(r)[1 + a′(r)] (E.9)

Wake rotation The thrust coefficient associated with wake rotation, as given by equation (E.1)
can be obtained using the definition of a′ from equation (E.6), with uψ = −2a′(r)Ωr:

Ct,rot(r) = 2
(

Γ
2πU0

)2 ˆ R

r

dr

r3 =
(

Γ
2πU0

)2 [ 1
r2 −

1
R2

]
=
(
k

2

)2 [ 1
λ2
r

− 1
λ2

]
(E.10)

Comparing equation (E.8) with equation (E.10), it is immediately seen that the thrust missing in
the Stream-tube analysis is the thrust associated to the pressure drop due to the wake rotation,
viz.:

Ct,KJ(r) = Ct,ST + Ct,rot(r) (E.11)
This result is consistent with the careful momentum analysis performed by Sørensen and Van
Kuik [193]. The power coefficient from equation (E.7) can also be written in term of Ct,rot, by
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using k = Ct,KJ(r)/ (1 + a′(r)) as:

Cp,KJ = k [1− a] = Ct,KJ(r)
1 + a′(r) [1− a] = 4a[1− a]2 1

1 + a′(r) + Ct,rot(r)
1− a

1 + a′(r) (E.12)

Equations (E.8) and (E.7) can be compared to the 1D momentum theory values, respectively:
4a[1 − a] and 4a[1 − a]2. The effect of wake rotation is then seen to increase the local thrust
coefficient and reduce the local power coefficient as compared to the constant 1D case.

E.3 Superposition of cylindrical vortex models for rotor mod-
elling

Introduction The assumption of constant circulation along the radius can be relaxed by using
a superposition of elementary models with uniform circulation. The circulation is assumed to be
piecewise continuous with the radius. Notations are introduced in figure E.1 (a) and (b). The i-th
circulation change, occurring at r = Ri, is associated with an elementary vortex system extending
from R0 = 0 to Ri of intensity Γ̃i = Γi − Γi+1. The last cylinder, indexed n, extends from 0 to R.
For convenience the ghost index n + 1 is introduced such that Γn+1 = 0. The tangential vorticity
of the cylinder i is

γi = Γ̃i
hi

(E.13)

where hi is the local helical pitch to be determined to form a consistent vortex system.

Γi

Γn

Γ2
Γ1

Γ(r)

r

R0

Ri
Ri−1

ri

(a)

ri

Γ1 − Γ2 = Γ̃1

Γ̃2
Γ̃i−1

Γi − Γi+1 = Γ̃i

Γn = Γ̃n

ri

No
contribution

at ri

Contribute
to uz and
uψ at ri

(b) (c)

Uz = U0 +
∑
j>i

γj

Uz = U0 +
∑
j≥i

γj

uψ =
∑
j≥i

−Γ̃j
2πr = − Γi

2πr

uψ =
∑
j>i

−Γ̃j
2πr = −Γi+i

2πr

R0 r0

Ri−1

Figure E.1: Sketch and notations for the superposition of cylindrical models - Side view. (a) Discretization of
the bound circulation along the rotor span. (b) Decomposition of the wake as a superposition of cylindrical
models extending from R0 to Ri and with intensities Γ̃i. The cylinders all start at z = 0 but are represented
spaced in this figure. (c) Velocities induced in the far-wake by the total system of cylindrical models on
both side of cylinder i.

In the case of infinite tip-speed ratio, the superposition of vortex cylinder models gives similar
results than 2D momentum theory. This link was mentioned by Glauert [71, p. 230] and was
formally proved in a previous work by the authors [23]. The finite tip-speed ratio case is handled
using the same approach as in [23]. For this reason, only the key steps are summarized in the
following paragraph.

Inductions variables The axial and tangential inductions in the rotor plane for the superposition
of cylinders are directly obtained from the properties of an elementary vortex cylinder introduced
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in section E.2. For Ri−1 < r < Ri we obtain:

ai = −
n∑
j=i

γj
2U0

, a′i(r) =
n∑
j=1

Γ̃j
4πΩr2 = Γi

4πΩr2 (E.14)

It is immediately seen from equation (E.14) that the tangential induction is only a function of
the circulation of the closest surrounding cylinder. The axial induction requires a more thorough
analysis. Figure E.1c shows the velocities in the far wake which are twice the one at the rotor. The
far wake axial induction is:

uz,FW(Ri−1 < r < Ri) =
n∑
j=i

γj (E.15)

Convection velocity Vortex sheet kinematics specify the intensity of a vortex sheet depending
on the velocity jump across it. This condition is automatically satisfied by an isolated vortex
cylinder and by the system of superposed cylinders. The difference arising when the systems are
superposed lays in the convection velocity of the vortex sheets. An isolated cylinder is transported
according to the surrounding free-stream velocity U0 and its self induction γt/2 (see equation (E.2)).
In the case of a cylinder contained within other cylinders, the surrounding free-stream “seen” by
the cylinder is a function of the velocity induced by the containing cylinders. Using equation (E.15)
and the fact that a vortex sheet convects as the mean of its surrounding velocities, the convection
velocity in the far-wake of the cylinder i within the full vortex system is:

Vc,i = 1
2 [U0 + uz,FW (Ri−1 < r < Ri) + U0 + uz,FW (Ri < r < Ri+1)]

= U0 +
n∑

j=i+1
γj + γi

2 = U0

(
bi + γi

2

)
(E.16)

where the following notations are introduced:

γ = γ

U0
, bi = 1 +

n∑
j=i+1

γj (E.17)

The convection velocity is used to determined the pitch of the hi introduced in equation (E.13).

E.4 System closure under assumption of large tip-speed ra-
tio

In the general case relation equation (E.13) requires solving since the helix pitch depends on the
induced velocities which in turn depend on the vorticity distribution. The following notations are
introduced:

ki = ΩΓi
πU2

0
, k̃i = ΩΓ̃i

πU2
0

(E.18)

In the absence of tangential induction in the wake (e.g. for high tip-speed ratio), it can be assumed
that the helix pitch corresponds to the distance run by the vorticity within one rotor revolution:

hi = 2π
Ω Vc,i (E.19)

Under the same assumption, and considering one cylindrical vortex system of intensity Γ̃i, the local
and total thrust coefficients are equal and verify CT = Ct = k̃i. Introducing equation (E.19) and
equation (E.16) into equation (E.13) gives:

γi = −Γ̃
U0hi

= −Γi − Γi+1

2πU0Vc,i
= − Γi − Γi+1

2πU2
0

[
bi + γi

2

] = −ki − ki+1

2bi + γi
. (E.20)
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The above leads to the following system for γi
γ2
i + 2biγi + (ki − ki+1) = 0, (E.21)

for which a physical solution is

γi = −bi +
√
b2i − (ki − ki+1) (E.22)

Using equation (E.22) and starting from i = n, it can proven by induction that:
γn = −1 +

√
1− kn, γi = −

√
1− ki+1 +

√
1− ki (E.23)

and thus:
bn = 1 bi =

√
1− ki+1 (E.24)

Vc,n = U0

2 (1 +
√

1− kn) Vc,i = U0

(
bi + γi

2

)
= U0

2 (
√

1− ki+1 +
√

1− ki) (E.25)

hn = πU0

Ω (1 +
√

1− kn) hi = πU0

Ω (
√

1− ki+1 +
√

1− ki) (E.26)
Eventually, the induced velocity between two cylinders is:

uz(ri−1 < r < ri) =
n∑
j=i

γj
2 = 1

2

(
−1 +

√
1− ki

)
= γ̂i

2 = − Γi
2ĥi

(E.27)

where the hat-notation refers to values obtained for an isolated cylinder of intensity Γi. For the
isolated cylinder the convection velocity is solely influenced by the free-stream and its self induction
and one has:

ĥi = πU0

Ω (1 +
√

1− ki), γ̂i = U0(−1 +
√

1− ki) (E.28)

Results from equation (E.27) reveals that between two vortex cylinders, the axial induced velocity is
only influenced by the upper cylinder and the induction is equal to the one that would be obtained
if the cylinder was isolated.

Closure with constant pitch If the kinematics condition is discarded, it can be assumed that
each cylinder has the same helix pitch h. This erroneous assumption implies that equation (E.13)
does not need to be solved. In this case, γi = −Γ̃i/h and the induced velocity between two cylinders
given by equation (E.14) is:

uz(ri−1 < r < ri) =
n∑
j=i

γj
2 = −Γi

2h (E.29)

The independence of the axially induced velocities between the stream-tubes is also verified in
this case. Nevertheless, the comparison of equation (E.29) and equation (E.27) shows surprising
analogies between the two different approaches.

E.5 System closure for finite tip-speed ratio

Similar to section E.2, the total system is closed if the convection velocity of each cylinder is
consistent with the definition of the different vortex cylinder strengths. The convection velocity
of the cylinder i is defined as in equation (E.2) using the average velocity from both sides of the
cylinder (see figure E.1c),

Vψ,i = −Γi + Γi+1

4πRi
, Vz,i = U0

(
bi + γi

2

)
, with bi ≡ 1 +

n∑
j=i+1

γj , bn ≡ 1 (E.30)
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Similar to equation (E.3), the pitch associated with the cylinder i is:

hi = ∆t · Vz,i = 2πU0

Ω
(
1 + a′c,i

) (bi + γi
2

)
, a′c,i ≡

Γi + Γi+1

4πΩR2
i

, a′c,n ≡
Γn

4πΩR2 (E.31)

Writing γi = −Γ̃i
/
hi, and using the pitch equation from equation (E.31), leads to the following

system:

γ2
i + 2biγi + (ki − ki+1)(1 + a′c,i) = 0 with: ki ≡

ΩΓi
πU2

0
, kn+1 ≡ 0. (E.32)

The system is readily solved as:
γi = −bi +

√
b2i − (ki − ki+1)(1 + a′c,i), if b2i − (ki − ki+1)(1 + a′c,i) > 0 (E.33)

In the case of infinite tip-speed ratio (a′c,i = 0), a simplification occurs such that the tangential
vorticity i only depends on the properties at i + 1 and the independence of the annuli thus holds.
It is seen that γi depends on the properties of all the surrounding systems from i to n. As a result
of this the annuli-independence assumed in ST and BEM analysis does not hold. In section E.6,
an erroneous system closure will be presented for which the annuli-independence holds.

Rotor variables From equation (E.14), and the definition of bi (equation (E.30)) it is seen that
bi = 1−2ai+1. The axial induction from equation (E.14) can then be written using equation (E.33):

ai = −1
2 [γi + bi − 1] = 1

2

[
1−

√
1− Ct,i(Ri) + Ct,i+1(Ri)− 4ai+1(1− ai+1)

]
, (E.34)

with

Ct,i(r) ≡ ki
(

1 + ki
4λ2

r

)
(E.35)

The function Ct,i is defined for Ri−1 ≤ r ≤ Ri. Defining the term Ci = 4ai(1 − ai) and using the
expression from equation (E.34) gives:

Ci = 4ai(1− ai) = Ct,i(Ri)− Ct,i+1(Ri) + 4ai+1(1− ai+1) (E.36)
Inserting Ci back into ai gives:

ai = 1
2 −

1
2

√√√√1− Ct,i(Ri) +
(
ki+1

2

)2
[

1
λ2
Ri

− 1
λ2
Ri+1

]
+ Ct,i+2(Ri + 1)− Ci+2, (E.37)

Using a proof by induction initialized for i = n with the results of section E.2, it is shown that:

ai = 1
2 −

1
2

√
1− Ct,i(Ri) + Ct,rot,i with Ct,rot,i =

∑
j>=i+1

(
kj
2

)2
[

1
λ2
Rj−1

− 1
λ2
Rj

]
(E.38)

From the result of the elementary system, the term Ct,rot,i can be interpreted as the thrust coefficient
of the force exerted on the disk by the wake rotation of the surrounding cylinders. Equation (E.38)
can also be rewritten as:

Ct,i(Ri) = 4ai(1− ai) + Ct,rot,i (E.39)

With equation (E.14) and equation (E.38), a′i and ai are known for a given distribution of ki, and
the thrust and power coefficients over the entire radius can be determined according to the KJ
relation from equation (C.2):

Ct,KJ(Ri−1 < r < Ri) = ki

(
1 + ki

4λ2
r

)
, Cp,KJ(Ri−1 < r < Ri) = ki (1− ai) (E.40)

A numerical implementation of the superposition of cylinders can easily be implemented using the
above formulae.
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E.6 Superposition of cylindrical vortex systems with wrong
closure

Assuming that the variation in tangential inductions between two neighboring cylinders are small,
equation (E.32) can be approximated as

γ2
i + 2biγi + Ci − Ci+1 = 0 with: Ci ≡ ki(1 + a′c,i) (E.41)

The system is similar to the one found for the case of infinite tip-speed ratio [23], but is obviously
erroneous in the finite tip-speed ratio case. The resolution of the system using a proof by induction
leads to:

γi = −
√

1− Ci+1 +
√

1− Ci, bi =
√

1− Ci+1, ai(r) = −
n∑
j=i

γj
2U0

= 1
2

(
1−

√
1− Ci

)
(E.42)

It is shown in [26], that this system is similar to a BEM formulation. Indeed this system reveals
the annuli independence which is assumed in ST analysis and can be exactly proven for the case of
infinite tip-speed ratio [23].

aU0 = − Γi
2ĥi
≡ γ̂i

2 ≡ ûz,i (E.43)

a′(r) = −
n∑
j=1

Γ̃j
4πr = − Γi

4πr ≡ ûψ,i(r) (E.44)

where a and a′ are dimensionless variables referred to as the axial and tangential coefficients re-
spectively, and the hat-notation will be clarified in the following section.

E.7 Algorithm for system closure
The determination of the helical pitch of the superposition of vortex system requires a computation
from the outer system to the inner one. The calculation is not iterative but purely incremental.
The steps of the calculation are detailed below.

1. For i = 1..n compute a′c,i from equation (E.31), kc,i from equation (E.32), and Ct,i from
equation (E.34):

a′c,i = Γi + Γi+1

4πΩR2
i

, a′c,n = Γn
4πΩR2 ki = ΓiΩ

πU2
0
, Ct,i = ki

(
1 + ki

4λ2
Ri

)
2. Loop from the outer to the inner control points, i = n..1 to determine the intensities γt,i.

- If i = n the following initialization is required(from equation (E.30)):
bn = 1, ∆Ct,rot,n = 0, Ct,rot,n = 0 (E.45)

Otherwise for control points i < n:

bi = 1 +
n∑

j=i+1
γj (E.46)

∆Ct,rot,i+1 =
(
ki+1

2

)2
[

1
λ2
Ri

− 1
λ2
Ri+1

]
(E.47)

Ct,rot,n =
n∑

j=i+1
∆Ct,rot,j (E.48)
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- The effective thrust coefficient is then computed:
Ct,eff,i = Ct,i − Ct,rot,i (E.49)

- If Ct,eff,i > 4ac(1− ac), with ac ≈ 0.34, then apply Spera’s high-thrust correction:

γt,i = −bi + 1− 2
[
Ct,eff,i − 4a2

c

4(1− 2ac)

]
(E.50)

Otherwise, use the solution from equation (E.33):
γt,i = −bi +

√
b2i − (ki − ki+1)(1 + a′c,i) (E.51)

3. The values of γt being known, the convection velocities and the pitch can be computed for
all i using equation (E.30) and equation (E.31):

Vc,i = U0

(
bi +

γt,i
2

)
, hi = 2π

Ω(1 + a′c,i
Vc,i (E.52)

Steps 1 and 3 can also be incorporated within the loop from i = n..1. They were isolated because
they can be easily vectorized unlike the relations within the loop of Step 2.
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AppendixF
Application of the helical and cylindrical
models - comparison with Actuator disk

F.1 Cylindrical model with wake rotation
One rotor The superposition of cylindrical models with wake rotation introduced in Chapter 2
is here compared to Actuator disk simulations. The simulations results were extracted from the
work of Madsen et al. [123]. A given thrust distribution along the span is prescribed for the AD
simulations. The thrust is equal to 0.95 along most of the span and drops linearly to zero towards
the root at r/R = 0.11 to avoid the singularity of the tangential induction. The prescribed thrust
coefficients Ct,AD is shown in figure F.1a. The tip-speed ratio is λ = 6.
For the system of cylinders with a prescribed loading, the variable k(r) can be determined either
from the thrust relation equation (2.7) or the torque relation equation (2.9). The latter case is not
as direct since it requires the axial induction, which in turn requires the thrust coefficient. Results
using both approaches are shown in figure F.1b. A number of 150 cylinders along the span were
used. The velocities at the disk obtained from the AD simulations and the superposition of vortex
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Figure F.1: (a): Thrust and torque coefficients along the span. The thrust coefficient is presribed for the
AD simulation and the vortex cylinder model. The thrust from wake rotation and the effective thrust
coefficient as obtained from the cylindrical model are also plotted on the figure. (b): Factor k in the
superposition of cylinders as obtained from Ct and Cq

cylinders (here labelled KJ) are compared to the one obtained using an “annuli-independent” Stream
Tube (ST) theory. Results for the axial and tangential velocities are shown in figure F.2. Results
from the cylindrical model are obtained using closed form analytical formulae. The agreement
between the AD and the cylindrical model is strong for most of the rotor span. Differences of axial
induction at the tip are observed most likely due to the wake expansion that is present in the AD
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simulations but not accounted for by the cylindrical model. The plots show the importance of
including the dependence between the different annuli, in particular, close to the root.
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Figure F.2: Comparison of axial and tangential inductions as obtained by Actuator Disk (AD) simulations,
the cylindrical wake model (KJ) and annuli-independent Stream-tube Theory (ST).

Several rotors In the previous paragraph, a rotor was modelled using a superposition of con-
centric cylindrical wake models. The method is here applied to 5 different rotors to show the
possibility to study the velocity upstream of a column of turbines using the model. The absence
of wake expansion in the model will affect the velocity field downstream of the rotors, but it is
expected that reasonable agreement with actuator disk simulations will be obtained upstream of
the rotor. Results as obtained by the cylindrical model with and without wake rotations are shown
in figure F.3. These results will be compared to AD simulations in the near future. The velocity
field is obtained directly using the closed form formulae of vortex cylinders.
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Figure F.3: Velocity field as induced by five rotors without (a) and with (b) wake rotation using the
cylindrical wake model (31 cylinders per rotor). All rotors have the same constant prescribed loading but
for the case (b) the loading drops linearly to zero. The velocity field is obtained directly using the closed
form formulae of a vortex cylinder. λ = 6, CT = 0.64.
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F.2 Helical model
Introduction In this section, the formulae for semi-infinite helical filaments are applied to model
a wind turbine with straight lifting lines of constant circulation. By increasing the number of blades
or the tip-speed ratios, the results are expected to converge towards a vortex cylinder model similar
to an actuator disk. This approach as been used to validate either the vortex cylinder formulae or
the helical filaments formulae. Results can also be compared to analytical and numerical actuator
disk results.

Note on the helical model instability In the work of Okulov and Sørensen [151] the stability
of helical vortex systems is studied. It is shown that the far wake described by the helical model of
Joukowski is unconditionally unstable for all pitch values.

Problem definition For increasing number of blades and tip-speed ratio the following parameters
can be used for the helices (neglecting the effect of the tangential induction)

Γ = CTπRU0

Bλ
, h = πR

λ

[
1 +

√
1− CT

]
(F.1)

It is to be noted that no core model was used for the helices, and thus high induction are found
in the vicinity of the helices. The linearized actuator disk results from the PhD thesis of Madsen
(Madsen 1988, see also Madsen et al. [123, 122]) are used for comparison. They are given as:

vr
U0

= ∆p
4π ln

(
z2 + (r + 1)2

z2 + (r − 1)2

)
(F.2)

vz
U0

= 1− ∆p
2π

(
atan 1− r

z
+ atan 1 + r

z

)
−∆pδz>0 (F.3)

and at the rotor, with A = 2.24, z0 = 0.04:
vr
U0

= CT
4πA ln

(
z2

0 + (r + 1)2

z2
0 + (r − 1)2

)
(F.4)

vz
U0

= 1− CT
2πA

(
atan 1− r

z0
+ atan 1 + r

z0

)
(F.5)

F.2.1 Influence of number of blades
Number of blades (helices) from 1 to 10 are used in this study. The axial induction is illustrated
in figure F.4, the radial induction in figure F.5 and the tangential induction in figure F.6 and
figure F.7.
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Figure F.4: Axial induction for various number of blades (B={1,2,3,10}). Convergence towards a constant
axial induction..
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Figure F.5: Velocity in the rotor plane for various number of blades (B = {1, 2, 3, 10}) and contour of the
radial velocity.
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Figure F.6: Tangential velocity for various number of blades - Influence of tip vorticity only. Results tending
to 0 inside of the rotor disk as B increases. The tangential tends to a be proportional to 1/r outside of the
rotor disk..
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Figure F.7: Tangential velocity for various number of blades - Influence of tip vorticity and root vortex.
Results tending to zero outside of the rotor disk as B increases. A 1/r behavior inside the disk is observed
(though desingularized at the root)..

F.2.2 Sensitivity to lambda
Overview of the velocity field at the rotor plane The velocity field in the rotor plane for
a three bladed rotor and different tip-speed ratio is shown in figure F.8, figure F.10 and figure F.9
for the axial, tangential and radial induction.
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Figure F.8: Axial velocity - Convergence towards a constant axial induction.
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Figure F.9: Tangential velocity (including root vortex) Convergence to 0 outside the rotor disk and 1/r
behavior inside..
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Figure F.10: Radial velocity and in plane flow direction. The tangential induction tends to be negligible
and the radial flow becomes axi-symmetric as the λ increases..
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Variable on the lifting line The evolution of the axial, radial and tangential induction on the
lifting line is shown in figure F.11.
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Figure F.11: Axial(a) - radial (b) and tangential (c) inductions on the lifting line.
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F.2.3 Comparison to actuator disk results
The comparison between a rotor with B = 100 modeled with rigid helices of constant intensities
and AD analytical and numerical results is shown in figure F.12. The simulation setup is similar
to the one found in Madsen 1995 [125], upstream of the rotor at x = 0.5R.
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Figure F.12: Axial (a) and radial (b) inductions upstream of an actuator disk using 100 helices, or AD
numerical (NS) and linearized results (2D analytical).
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