Site perso : Emmanuel Branlard

Subsections

2.3 General resolution of the perturbated linear equation of motion

2.3.0.1 Vectorial form

Boundaries conditions must be added for the problem to be solvable:


$\displaystyle f(s)$ $\displaystyle =$ $\displaystyle u''+ K(s).u$  
$\displaystyle u(s_0)$ $\displaystyle =$ $\displaystyle u_0$  
$\displaystyle u'(s_0)$ $\displaystyle =$ $\displaystyle u'_0$  

For the resolution we will use the general method of a nth degree linear differential equation using the Resolvent matrix. This method is very nice and has the advantage of giving a result directly on matrix form. To get started, let's write equation 2.2 in vectorial formalism:

$\displaystyle \begin{pmatrix}u'\\ u''\\ \end{pmatrix} = \begin{pmatrix}0 & 1\\ ...
...\begin{pmatrix}u\\ u'\\ \end{pmatrix} + \begin{pmatrix}0\\ f(s)\\ \end{pmatrix}$ (2.9)

Now, we define $ X=(u \;u')^{T} $, and equation 2.9 reduces to the following general linear differential equation:

$\displaystyle X'(s)=A(s)X(s) + B(s)$ (2.10)

The method we will further describe can apply to any vector $ X=(u\; u'\; u''\; ...\; u^{(n)})^T $ in a more general context of a n$ ^{th}$ degree differential equation.

2.3.0.2 Homogeneous equation

We first solve the Homegeneous Equation:

$\displaystyle X'(s)=A(s)\!X(s)$ (2.11)

and define the resolvent matrix $ R(s) = [C_1\: ...\: C_n]$ where $ C_i=(x_i(s)\; x_i'(s)\; ...\; x_i^{(n)}(s))^T$ and $ (x_i)_{i\in\left[1;n\right]}$ is a base of the vectorial space of solutions. These solutions are called principal solutions. As we have $ \forall i\ C_i'=A.C_i$ then

$\displaystyle R(s)'=A(s).R(s) $

and the general solution will be:

$\displaystyle X(s)=R(s).\Omega_0$

where $ \Omega_0=(u_0\; u'_0\; ... \; u^{(n)}_0)^T$, is a constant vector defined by the boundary conditions.

2.3.0.3 Particular solution by variation of constant parameter

Let's find a solution that can be written $ X(s)=R(s).\Omega(s)$ and solve the general system.
$\displaystyle X'$ $\displaystyle =$ $\displaystyle AX+B$ (2.12)
$\displaystyle X$ $\displaystyle =$ $\displaystyle R.\Omega$ (2.13)

Replacing 2.13 in the general equation 2.12, and remembering that $ R'=AR $ we have:

$\displaystyle R\Omega'=B $

The invertibility of R, given by the fact that it contains base vectors leads us to:

$\displaystyle \Omega(s)=\int^{s}_{s_0} R^{-1}(t)B(t)dt $

and the particular solution is defined.

2.3.0.4 General Solution

We eventually find the general solution as the sum of the particular solution and the homogeneous solution:

$\displaystyle X(s) = R(s).(\Omega_0+\Omega(s))$ (2.14)

2.3.0.5 Going back to two dimensions

In two dimension, the resolvent matrix $ R(s) = [C_1\: ...\: C_n]$ , can be written, without loss of generality:

$\displaystyle R(s)=\begin{pmatrix}
C(s) & S(s)\\
C'(s)& S'(s)\\
\end{pmatrix}$

$\displaystyle R^{-1}(s)=\begin{pmatrix}
S'(s) & -S(s)\\
-C'(s)& C(s)\\
\end{pmatrix}$

Now, in our particular case, $ f(s)=\frac{1}{\rho_0}(s) \:\delta$

And by assuming $ \delta$ stay constant between $ s_0$ and $ s$:

$\displaystyle \displaystyle\Omega(s)=\int^{s}_{s_0} R^{-1}(t) \begin{pmatrix}0\...
...gin{pmatrix}
\frac{-S}{\rho_0}(t) \\
\frac{C}{\rho_0}(t) \\
\end{pmatrix} dt $

We can now define D, the dipersion function, from:

$\displaystyle R(s).\Omega(s)=\delta \! \begin{pmatrix}
D(s) \\
D'(s) \\
\end{pmatrix} $

So that the dispersion function is:

$\displaystyle D(s)=\int^{s}_{s_0} \frac{1}{\rho_0}(t)\left[S(s)C(t)-C(s)S(t) \right]dt$ (2.15)

Then we can add a new initial parameter, $ \delta = \frac{\delta p}{p}$ and eventually the general solution 2.15 can be written:

$\displaystyle \begin{pmatrix}
u \\
u'\\
\delta\\
\end{pmatrix}=
\begin{pmatr...
...
\end{pmatrix}.
\begin{pmatrix}
u(s_0) \\
u'(s_0)\\
\delta_0\\
\end{pmatrix}$

2.3.0.6 Particular case of $ K(s)=k$ constant

It is straightforward to find principal solutions for equation 2.9.


For $ k$ < 0   $ C(s)$ = $ \displaystyle\cosh \sqrt{-k}\left(s-s_0\right) $   $ S(s)$ = $ \displaystyle\frac{\sinh \sqrt{-k}\left(s-s_0\right) }{\sqrt{-k} }$
For $ k$ > 0   $ C(s)$ = $ \displaystyle\cos \sqrt{k}\left(s-s_0\right) $   $ S(s)$ = $ \displaystyle\frac{\sin \sqrt{k}\left(s-s_0\right)}{\sqrt{k}}$
For $ k$ = 0   $ C(s)$ = $ 1 $   $ S(s)$ = $ \left(s-s_0\right)$

These results close our section on general beam dynamics to now focus on matrix formalism and beam optics. Indeed, the case $ K=k$ is a good approximation for most accelerator components, and the distinction between the cases $ k<0$, $ k>0$ and $ k=0$ respectively reflects the distinction between defocusing elements, focusing elements, and a simple drift.








Emmanuel Branlard