Site perso : Emmanuel Branlard

Subsections

7.5 Results summary

7.5.1 Fields calculation

For a uniform cylinder of radius $ a$ and half length $ b$ :
$\displaystyle E_{z,int}(0,z_0)$ $\displaystyle =$ $\displaystyle - \frac{\rho}{2 \epsilon_0} \left[
-2z_0 + \frac{1}{2} \left( \fr...
...a^2+2\left(z_0-b\right)^2 }{ \sqrt{\left(z_0-b \right)^2+a^2} } \right) \right]$ (7.33)
       
$\displaystyle E_{z,ext}(0,z_0)$ $\displaystyle =$ $\displaystyle - \frac{\rho}{2 \epsilon_0} \left[ -2 b\: \text{sign}\left(z_0\ri...
...a^2+2\left(z_0-b\right)^2 }{ \sqrt{\left(z_0-b \right)^2+a^2} } \right) \right]$ (7.34)

For a uniform spheroid of radius $ a$ and half length $ b$, the internal fields are :
For$\displaystyle \ a<b\ :$     (7.35)
$\displaystyle E_{z,int}(0,z_0)$ $\displaystyle =$ $\displaystyle - \frac{\rho}{\epsilon_0} \frac{1}{\frac{b^2}{a^2}-1} \left( 1-\frac{ \frac{b}{a}}{\sqrt{\frac{b^2}{a^2}-1}} \arg\cosh\frac{b}{a} \right) z_0$ (7.36)
$\displaystyle E_{z,ext}(0,z_0)$ $\displaystyle =$ $\displaystyle - \frac{\rho}{2\epsilon_0}a^2 b \left[\frac{\text{sign}(z_0)}{b^2...
...0\vert}{\sqrt{b^2-a^2}} \right)+\frac{\text{sign}(z_0)}{\sqrt{b^2-a^2}} \right]$ (7.37)
      (7.38)
For$\displaystyle \ a>b\ :$     (7.39)
$\displaystyle E_{z,int}(0,z_0)$ $\displaystyle =$ $\displaystyle - \frac{\rho}{\epsilon_0} \frac{1}{\frac{b^2}{a^2}-1} \left( 1-\frac{ \frac{b}{a}}{\sqrt{1-\frac{b^2}{a^2}}} \arccos\frac{b}{a} \right) z_0$ (7.40)
$\displaystyle E_{z,ext}(0,z_0)$ $\displaystyle =$ $\displaystyle - \frac{\rho}{2\epsilon_0}a^2 b \left[-\frac{\text{sign}(z_0)}{a^...
...0\vert}{\sqrt{a^2-b^2}} \right)-\frac{\text{sign}(z_0)}{\sqrt{a^2-b^2}} \right]$ (7.41)

For a uniform ellipsoid of semiaxes $ r_x$, $ r_y$, $ r_z$, the internal fields are :
$\displaystyle E_{x,int}(x)$ $\displaystyle =$ $\displaystyle \frac{1}{4\pi\epsilon_0} \frac{3I\lambda}{c\gamma^2}\frac{1-f}{r_x (r_x+r_y) r_z} x$ (7.42)
$\displaystyle E_{y,int}(y)$ $\displaystyle =$ $\displaystyle \frac{1}{4\pi\epsilon_0} \frac{3I\lambda}{c\gamma^2}\frac{1-f}{r_y (r_x+r_y) r_z} y$ (7.43)
$\displaystyle E_{z,int}(z)$ $\displaystyle =$ $\displaystyle \frac{1}{4\pi\epsilon_0} \frac{3I\lambda}{c}\frac{f}{r_x r_y r_z} z$ (7.44)

7.5.2 RMS calculation

RMS calculations performed above are simple calculus and integrations. It is good to keep their values in mind, but to be convinced one often do the calculation at each time the value is needed. Let's write down the previous results in this section, so that we can refer to it later without doing the calculation again.

For a uniform cylinder( $ x_0=y_0=r_0$):
$\displaystyle x_$rms $\displaystyle =$ $\displaystyle \sqrt{\langle x^2 \rangle_n} = \frac{1}{2} x_0$ (7.45)
$\displaystyle r_$rms $\displaystyle =$ $\displaystyle \sqrt{\langle r^2 \rangle_n} = \frac{1}{\sqrt{2}} r_0\ (= \sqrt{2}\; x_$rms$\displaystyle )$ (7.46)
$\displaystyle z_$rms $\displaystyle =$ $\displaystyle \sqrt{\langle z^2 \rangle_n} = \frac{1}{\sqrt{3}} z_0$ (7.47)
$\displaystyle z_$rms $\displaystyle =$ $\displaystyle \sqrt{\langle z^2 \rangle_n} = \frac{1}{\sqrt{12}} l_z$ (7.48)

For a uniform spheroid( $ x_0=y_0=r_0$):
$\displaystyle x_$rms $\displaystyle =$ $\displaystyle \sqrt{\langle x^2 \rangle_n} = \frac{1}{\sqrt{5}} x_0$ (7.49)
$\displaystyle r_$rms $\displaystyle =$ $\displaystyle \sqrt{\langle r^2 \rangle_n} = \sqrt{\frac{2}{5}} r_0\ (=\sqrt{2}\; x_$rms$\displaystyle )$ (7.50)
$\displaystyle z_$rms $\displaystyle =$ $\displaystyle \sqrt{\langle z^2 \rangle_n} = \frac{1}{\sqrt{5}} z_0$ (7.51)
$\displaystyle E_{z,\text{rms}}$ $\displaystyle =$ $\displaystyle \sqrt{\langle {E_z}^2 \rangle_n} = \frac{E_{max}}{\sqrt{5}}$ (7.52)








Emmanuel Branlard