Site perso : Emmanuel Branlard

Subsections


1.2 Basic notions of relativity

1.2.1 Relativity parameters and useful formulas

The definition of the relativistic momentum is expressed in function of the rest mass $ m_0$ (for an electron $ m_e=9.10938\times 10^{-31}$   kg):

$\displaystyle \v{p} = \gamma m_0 \v{v}$ (1.3)

The relativistic factor $ \gamma$ being:

$\displaystyle \gamma = \frac{1}{\sqrt{1-\beta^2}}$ (1.4)

The relative velocity $ \beta$ being:

$\displaystyle \v{\beta} = \frac{\v{v}}{c}$ (1.5)

The energy of a particle of rest mass $ m_0$ travelling at $ \v{v}$ is:

$\displaystyle \mathcal{E} = \gamma m_0 c^2$ (1.6)

The basic unit of energy used is the energy of a particule of charge $ e$ would gain while being accelerated between two conducting plates at a potential difference of one Volt: one electron volt (eV). By introducing the definitions of $ \gamma$ , $ \beta$ and $ p$, we have the following expression for the energy:

$\displaystyle \mathcal{E}^2 = c^2p^2+m_0^2c^4$ (1.7)

$\displaystyle \v{p} = \gamma m_0 \v{v}= \gamma m_0 c \v{\beta} = \frac{\mathcal{E}}{c} \v{\beta}$ (1.8)

The latter expression justify the expression of the momentum in the unit eV/c, instead of the classic mecanics one: kg m/s. In the case of a conserved linear momentum, without external forces we can write:

$\displaystyle \v{v}=\frac{d\v{r}}{dt} = \frac{c^2 \v{p}}{\mathcal{E}}$ (1.9)

$\displaystyle \v{r} =$   cst$\displaystyle + \frac{c^2 \v{p}}{\mathcal{E}} t$ (1.10)

1.2.2 Lorentz transformation

1.2.2.1 Space Transformation

In the four dimensional space, we consider two reference frames $ \mathcal{R}$ and $ \mathcal{R'}$ with a relative velocity $ \v{v}$ between them. The coordinates of a point in each frame are $ X=\left(t,x,y,z \right)$, and $ X'=\left(t',x','y,z' \right)$. The construction of Lorentz group transformation leads to the expression of any general Lorentz transformation:
$\displaystyle L$ $\displaystyle =$ $\displaystyle -\boldsymbol{\omega} \cdot \boldsymbol{S} - \boldsymbol{\zeta} \cdot \boldsymbol{K}$ (1.11)
$\displaystyle A$ $\displaystyle =$ $\displaystyle e^{L}$ (1.12)

where the coordinates from a frame to another are transformed by matricial multiplication by the Lorentz matrix $ A$:

$\displaystyle X'=A\cdot X$ (1.13)

The 4$ \times$4 matrix $ L$, has null diagonal term. Its other terms can be expressed by six parameters(degree of freedom) and each of them can be decomposed on a base of 6 canonical 4$ \times$4 matrices $ S_i$ and $ K_i$, $ i \in \{1 ; 2 ; 3\}$, the first ones being antisymmetric contrary to the second ones that are symmetric(refer to [21] for the expression of these matrices). $ \boldsymbol{\omega}$ and $ \boldsymbol{\zeta}$ are 3 dimensional vectors that can be respectively intepreted in term of rotation and boost of the coordinate axis of the frame $ \mathcal{R'}$. The product $ \boldsymbol{\omega} \cdot \boldsymbol{S}$ and $ \boldsymbol{\zeta} \cdot \boldsymbol{K}$ are thus tensorial products so that the result is a 4$ \times$4 matrix.
For a boost without rotation ( $ \boldsymbol{\omega}$=0) in an arbitrary direction, the boost vector can be written in term of the relative velocity $ \v{\beta}$:

$\displaystyle \boldsymbol{\zeta} = \tanh^{-1}\left(\beta\right) \frac{\v{\beta}}{\beta}$ (1.14)

The lorentz transformation matrix reduces then:

$\displaystyle A_{\text{boost}}(\v{\beta}) =\left( \begin{array}{cccc} \gamma & ...
...beta_z}{\beta^2} & 1+ (\gamma-1)\frac{\beta_z^2}{\beta^2}\\ \end{array} \right)$ (1.15)

1.2.2.2 Field Transformation

Choosing the prime notation to refer to parameters in the moving frame, the fields in the laboratory frame are obtained using the following Lorentz transformation[21]:

$\displaystyle \v{E}$ $\displaystyle =$ $\displaystyle \gamma \left(\v{E}'-\v{\beta} \times \v{B}'\right) - \frac{\gamma^2}{\gamma+1} \left(\v{\beta} \cdot \v{E}' \right)\v{\beta}$ (1.16)
$\displaystyle \v{B}$ $\displaystyle =$ $\displaystyle \gamma \left(\v{B}'+\v{\beta} \times \v{E}'\right) - \frac{\gamma^2}{\gamma+1} \left(\v{\beta} \cdot \v{B}' \right)\v{\beta}$ (1.17)

Using the hypothesis that $ B'=0$, the formulation reduces to:

$\displaystyle \v{E}$ $\displaystyle =$ $\displaystyle \gamma \v{E}' - \frac{\gamma^2}{\gamma+1} \left(\v{\beta} \cdot \v{E}' \right)\v{\beta}$ (1.18)
$\displaystyle \v{B}$ $\displaystyle =$ $\displaystyle \gamma \v{\beta} \times \v{E}'$ (1.19)

1.2.2.2.1 Longitudinal field and pure longitudinal momentum

It can be noticed that in the common situation where $ \v{\beta}= \beta \v{e_z}$, the field in the laboratory frame will be reduced to:

$\displaystyle E_z = \frac{\gamma +\gamma^2(1-\beta^2)}{\gamma +1} E'_z = E'_z$ (1.20)

Thus, the two fields are the same for any velocity in the hypothesis of pure longitudinal momentum.






Emmanuel Branlard